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Abstract
A hypervisor (also know as virtual machine monitor, VMM)
enforces the security boundaries between different virtual
machines (VMs) running on the same physical machine. A
malicious user who is able to run her own kernel on a cloud
VM can interact with a large variety of attack surfaces. Ex-
ploiting a software fault in any of these surfaces leads to full
access to all other VMs that are co-located on the same host.
Hence, the efficient detection of hypervisor vulnerabilities
is crucial for the security of the modern cloud infrastructure.
Recent work showed that blind fuzzing is the most efficient
approach to identify security issues in hypervisors, mainly
due to an outstandingly high test throughput.

In this paper we present the design and implementation of
NYX, a highly optimized, coverage-guided hypervisor fuzzer.
We show how a fast snapshot restoration mechanism that al-
lows us to reload the system under test thousands of times per
second is key to performance. Furthermore, we introduce a
novel mutation engine based on custom bytecode programs,
encoded as directed acyclic graphs (DAG), and affine types,
that enables the required flexibility to express complex inter-
actions. Our evaluation shows that, while NYX has a lower
throughput than the state-of-the-art hypervisor fuzzer, it per-
forms competitively on simple targets: NYX typically requires
only a few minutes longer to achieve the same test coverage.
On complex devices, however, our approach is able to signifi-
cantly outperform existing works. Moreover, we are able to
uncover substantially more bugs: in total, we uncovered 44
new bugs with 22 CVEs requested. Our results demonstrate
that coverage guidance is highly valuable, even if a blind
fuzzer can be significantly faster.

1 Introduction

As the digital landscape shifts more and more towards cloud
computing, the security of hypervisors becomes increasingly
vital for our society. At the same time, hypervisors are com-
plex pieces of software that deal with very low-level details of

the underlying hardware. To properly understand the behavior
of a hypervisor both for security analysts and off-the-shelf
analysis tools, we need a large amount of information on
low-level hardware details. In combination with the fact that
they are typically running in a highly privileged setting, this
makes it difficult to properly test and analyze hypervisors for
potential (security) bugs.

Fuzzing has been studied as an effective way to uncover
bugs in hypervisors [7, 12, 13, 23, 24, 28, 38, 47, 48, 52, 53].
The state of-the-art methods are VDF [28] and HYPER-
CUBE [48]. The former is based on isolating individual
QEMU device drivers into harnesses that can be fuzzed by
AFL [65], while the latter does not use any coverage feedback
but is a blind fuzzer. Surprisingly, HYPER-CUBE still outper-
formed VDF on nearly all benchmarks. This is due to the fact
that the device emulation in VDF is way too slow. In addition,
the increased test throughput of a blind fuzzer outweighs the
advantages of coverage feedback. Generally speaking, all ex-
isting fuzzers either isolate a part of the hypervisor code base
into a standalone ring-3 application (harness) to obtain code
coverage feedback, or are not guided by coverage feedback
at all. Existing approaches have significant drawbacks, as we
explain in the following.

One the one hand, isolating individual device emulators
requires significant manual effort. Hence, such methods do
not scale across different hypervisor implementations. Even
worse, they risk introducing bugs that cannot be triggered in
the original version (false positive) and more importantly, they
can hide bugs that would otherwise be found (false negatives).
To avoid this, one has to be very careful to reproduce the
original environment of the device emulator faithfully. In
addition, this approach is unable to test the parts that cannot
easily be extracted. On the other hand, blind fuzzing is very
efficient if a precise generator of the expected behavior is
given. Unfortunately, this method fails to uncover “interesting”
(especially security-critical) behaviors in complex devices and
interfaces within a hypervisor. Most recent research in the
general area of fuzzing has focused on coverage guidance as a
feedback loop [2,6,10,14,42,43,62,65]. Time and time again,
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experiments have shown that coverage-guided fuzzing can
drastically improve the ability to find software faults. Modern
coverage-guided fuzzers can “learn” how interesting inputs
look like without a precise specification. Even in the case
where a specification is given, coverage-guided fuzzing can
greatly increase the ability to test interesting behavior over
blind fuzzing [1, 40, 43].

In this paper, we present NYX, a novel fuzzer that is able
to test hypervisors (and, in fact, arbitrary x86 software) using
coverage-guided fuzzing. As we will later see, our approach
significantly outperforms HYPER-CUBE on complex devices,
re-establishing the observation that coverage guidance offers
significant advantages over blind fuzzing. This holds even if
it comes with a significant reduction in test throughput.

Implementing coverage-guided hypervisor fuzzing without
relying on manually created harnesses introduces its own
set of challenges. Most significantly, in a full system setting,
we typically cannot compile all relevant components with a
custom compiler to obtain code coverage. Additionally, we
need to be able to run the target—even in the presence of
memory corruptions and crashes. Lastly, we need to be able
to interact with a diverse set of interfaces.

To handle crashes and to perform introspection efficiently,
we run the target component (i.e., the hypervisor we want
to test) in our own hypervisor. Consequently, a large num-
ber of components are running at the same time: The host
OS, running the host hypervisor, in which we run the target
OS with the target hypervisor, in which the agent OS is run-
ning. Overall, this setup consist of three different operating
systems and two different hypervisors. This introduces addi-
tional problems, mainly related to complexity: each of these
components has a significant amount of state and seemingly
non-deterministic behaviors such as timing interrupts.

To tackle all these challenges, we propose a new design
that builds upon features of two existing fuzzing projects. By
using Intel-PT (Processor Trace), we obtain code coverage
information on the code running in our host hypervisor sim-
ilar to KAFL [49]. Furthermore, we use a modified version
of HYPER-CUBE’s custom OS [48] to run inside the target
hypervisor. Based on this basic setup, we built our coverage-
guided hypervisor called NYX that relies on two main features.
First, to handle the inherent statefulness and non-determinism
of this complex stack, we develop an extremely fast snap-
shot restoration mechanism that allows us to reload a whole
VM image in the host hypervisor many thousands of times
per second. Second, to effectively generate inputs for diverse
sets of interfaces, we design a new mutation engine that uses
user-provided specifications. The mutation engine generates
and mutates inputs that are effectively expressing highly opti-
mized “test playbooks” of multiple interactions. These inputs
are custom bytecode programs, encoded as directed acyclic
graphs (DAG). The user can provide a specification to the
fuzzer that describes the semantics of the bytecode and, im-
plicitly, the shape of the graphs produced. Additionally, we

use the idea of affine types, a class of typesystems that ensure
each value is used at most once. This allows the specifica-
tions to properly handle cases where resources are freed or
closed during testing. Using this highly flexible approach,
we demonstrate adapting the fuzzer to multiple targets. We
first implement a generic fuzzing specification for emulated
devices, similar to state-of-the-art fuzzers. To demonstrate the
strength and flexibility of our approach, we also build more
precise specifications for some of the more complex devices,
and even demonstrate that targeting modern paravirtualized
VirtIO devices becomes possible.

Our evaluation shows that this approach consistently out-
performs both coverage-guided and blind state-of-the-art hy-
pervisor fuzzers. During the evaluation, we found 44 new
bugs in current versions of hypervisors that were previously
tested by state-of-the-art fuzzers. At the time of writing, 22
CVEs have been requested from which 5 vulnerabilities have
already been fixed by the maintainers.
In summary, we make the following three key contributions:

• We present the design and implementation of NYX, a
coverage-guided, full-system hypervisor fuzzing tool
that found 44 new software faults in current hypervisors.

• We show how a highly optimized, full VM reload mech-
anism can be used to significantly accelerate fuzzing by
reloading a whole VM image many thousands of times
per second.

• We introduce the concept of an affine typed, structured
mutation engine and demonstrate the benefits and flexi-
bility of such mutations.

To foster research on fuzzing, we release NYX under an
open source license at https://github.com/RUB-SysSec/
nyx.

2 Technical Background

We now discuss some of the technical properties of hypervi-
sors that make fuzzing hypervisors challenging, and introduce
the techniques needed for efficient hypervisor fuzzing.

2.1 x86 Hypervisors
Hypervisors (sometimes called Virtual Machine Monitors)
manage sharing hardware resource to Virtual Machines
(VMs), also termed guest, within a host operating system
running on a physical machine. In modern systems, this is
usually implemented with the help of specific CPU features
such as specialized instructions and access protection schemes
that separate the memory and CPU states used by different
VMs. Similar protection schemes can be used to prevent VMs
directly accessing the hardware. Instead, generally speaking,
emulated hardware is provided by the hypervisor. In some
cases, real hardware that cannot be emulated easily can be
“passed-through” (e.g., graphics cards).
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2.2 Trap-VM-Exit and Paravirtualization

Any privileged operation (such as interaction with emulated
hardware) that happens inside of the VM is trapped and con-
trol is transferred back to the hypervisor (via a VM-Exit tran-
sition). The hypervisor can emulate the privileged operation
and return to the VM. This allows the hypervisor to emulate
non-existing devices and to apply additional security checks.
Generally speaking, the VM accesses emulated devices either
via Memory-Mapped I/O (MMIO) or by using Port I/O (PIO).
Hypervisor can set a trap condition for entire MMIO region.
Upon access request to the MMIO region, the VM exits to the
hypervisor. For port I/O operation, hypervisor uses a different
strategy. Generally, to access port I/O devices, the VM has to
use an in or out instruction. These instructions allow inter-
action with the port I/O address space and port I/O devices.
Hypervisors typically configure the CPU to trap on in/out
instructions. Either way, the hypervisor captures the VM-Exit,
inspects the exit reason, and calls the corresponding device
emulator. Device emulators are typically the largest (but not
the only) attack surface of hypervisors.

Since Trap-and-Exit emulation can be slow, many modern
hypervisors contain the ability to emulate hardware that does
not have physical pendants, but reduce communication over-
head. If the OS running inside the hypervisor is aware that it is
running in a virtualized environment, it can use these special
“paravirtualized” interfaces. In contrast to real devices that are
typically emulated, the protocols used to interact with paravir-
tualized devices typically use complex structures prepared in
the guests memory, containing instructions to execute whole
sequences of interactions. This way, most expensive context
switches can be avoided.

2.3 Challenges for Fuzzing Hypervisors

Hypervisors are a cornerstone of modern cloud infrastructures.
As such, their security is of utmost importance in practice. As
noted above, most previous research on fuzzing hypervisors
used blind fuzzing [7, 12, 13, 23, 24, 38, 47, 52, 53]. While it
is much easier to get a basic blind fuzzer to work compared
to a coverage-guided fuzzer, they often struggle to explore
complex devices, unless a lot of work is put into specific gen-
erators. The only exception is VDF [28], a project in which
individual device emulators from QEMU were extracted and
fuzzed with AFL [65] in ring-3. This helps with complex de-
vices, however the extraction process is very labor intensive
and cannot easily be performed for closed-source hypervisors.

Overall, hypervisors are challenging targets for fuzzing, as
they typically run with very high privileges, making it hard
to obtain code coverage information and to handle crashes.
Additionally, hypervisors are highly stateful, as they keep all
the state of each guest VM, themselves, and the emulated
hardware. Consequently, during fuzzing, it is difficult to iso-
late the effect of one single test case (input). Previous test

cases can heavily affect the result of a new test case. To pre-
vent this, the fuzzer has to take great care to ensure that the
state of the hardware is not affected by previous test cases.
For example, if one test case disables some emulated hard-
ware, subsequent test cases will not be able to interact with
it. Lastly, hypervisors do not consume a single well-formed
input. Instead, they provide a wide variety of different interac-
tive interfaces. Some of these interfaces require the guest OS
to setup complex, highly advanced structures in its own mem-
ory. Most existing general-purpose fuzzers aim at targeting
programs that consume a single binary string. Now that we
have identified existing challenges in coverage-guided fuzzing
for hypervisors, we are going to discuss them individually.

2.3.1 Code Coverage and Handling Crashes

To handle highly-privileged code, fuzzers typically make use
of virtualization to create an isolated, externally controlled en-
vironment. For instance, there are various fuzzers that are built
upon KAFL [49], such as REDQUEEN [2] or GRIMOIRE [6].
These fuzzers use a modified hypervisor (KVM-PT) that al-
lows to trace the code that runs inside of the VM. Furthermore,
these fuzzers use QEMU-PT, an extension that, amongst other
things, allows to decode the traces and obtain coverage in-
formation by utilizing hardware-assisted trace features such
as Intel-PT (Processor Trace). Since the fuzzers have full
control of the VM and any code running inside it, they can
gracefully handle crashes of complex components such as
closed-source operating systems.

Nested Virtualization Since we aim to fuzz hypervisors
inside of KVM-PT, we need to enable nested virtualization.
Nested virtualization describes the ability of a hypervisor, in
this terminology known as Level-0 (L0), to run an unmodified
guest hypervisor (L1 guest) and all of its associated guests
(L2 guests) in a virtual machine. Unfortunately, current x86
virtualization extensions, such as Intel VMX or AMD SVM,
do not provide the nested virtualization capability in hardware.
They only allow one hypervisor to be executed on one logical
CPU core at the same time. Hence, the support for nested
virtualization has to be implemented in software.

In modern hypervisors such as KVM, nested virtualization
is implemented via emulation. Similar to emulated devices,
the hypervisor traps all VMX instructions and emulates them
at L0. That is, to handle a write access to a port I/O address
at L2, L0 has to handle the trap first, pass on the PIO exit
reason to L1, and trap the VM re-entry at L1 and emulate it
to continue execution in L2. In theory, this adds a significant
overhead to nested guests. However, this can be accelerated
by multiple techniques [3]. KVM provides an efficient nested
virtualization implementation, which we also use for NYX.
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2.3.2 Fuzzing Stateful Applications

Many applications are to some extend stateful. That is, the
execution of one test case is not independent of all previously
executed test cases. In many instances, this statefulness is
rather obvious: a target that writes the content of the test case
to a file on the hard disc and fails if the file already exists
is obviously stateful. However, it also manifests in much
more subtle effects. For example, many standard hash table
implementations use the time to derive a key used to calculate
hashes. We observed that this would occasionally cause some
amount of non-determinism in the code coverage, depending
on whether the given keys collide or not.

In the context of hypervisors, a significant amount of state
is stored in the emulated devices such as timers in the inter-
rupt controller. These are often very relevant for the behavior
of the emulated devices. Thus, for reproducible test cases,
it is paramount to control the full state of the hypervisor at
the beginning of the execution. This is a very hard task. Pre-
vious approaches typically tackled this problem in one of
two ways: most blind fuzzers such as HYPER-CUBE tried
to ignore this aspect by booting into a controlled state and
then only execute a single, very long, test case, and reduce
overall environment noise. However, this does not work for
coverage-guided fuzzing and also causes problems when a
crash is found after a long time of fuzzing. Lastly, sometimes
the fuzzer might get stuck by inevitably disabling some device,
rendering all future interactions pointless. The only previous
coverage-guided fuzzer (VDF) tested only a small fraction of
the hypervisor (such as a single device emulator) in a ring-3
QEMU process. This allowed them to restart the whole pro-
cess to reset the device state. The obvious downside is that
this approach does not work for large amounts of the attack
surface of a typical hypervisor.

In this paper, we propose to use another approach: we im-
plement our own fork-like mechanism for a whole VM. This
has multiple advantages. First, it works independently of the
target. We can use this to overcome statefulness in user-space
applications, kernel components, and of course hypervisors
running nested inside of our hypervisor. Additionally, as we
reset the whole VM, we can also reset the emulated devices,
including tricky components such as timer interrupts. This
also applies for all nested VMs.

2.3.3 Fuzzing Interactive Interfaces

Most current fuzzers provide the target application with one
unstructured array of bytes. While this approach is very well
suited to target binary file format parsers and similar programs,
it is far less useful for interactive applications that follow
a well-known pattern of inputs over time (even though the
format of each input might be unknown). A surprisingly large
number of relevant applications actually behave like this.

Most importantly for us, hypervisors support a multitude
of different interfaces that can be interacted with—each with

obj = malloc_obj();
//use only after it was created
use(&obj)
//obj must not be used after free
free(obj);

Listing 1: Example demonstrating lifetime constraints for interactive targets.

a different format. Similarly, most kernels provide a large
number of different interactions points via interfaces such as
syscalls and ioctls. Lastly, even ordinary ring-3 applications,
such as network services, applications with a user interface, or
libraries that provide an API, require complex input formats.

Consider a simple API where a resource is first created,
then any number of operations are performed, and lastly the
resource is freed and must not be used afterwards. A similar
pattern emerges with most interactive interfaces. One hypo-
thetical test case that the fuzzer could generate is shown in
Listing 1. If the fuzzer generates inputs that free non-existing
objects, or accesses from objects that were not created yet,
most of the generated inputs are trivially invalid, and the time
spent to generate and run them is wasted. Even worse, while
this is unlikely in the context of hypervisor fuzzing, they might
lead to false positive crashes. For example, when fuzzing a li-
brary that provides these functions, handing an invalid pointer
to the library causes a crash that is not indicating a bug in the
library. To properly explore this kind of interfaces, the fuzzer
should be aware of the temporal relations between creating,
using, and destroying resources during input generation.

Grammar-based fuzzers (e.g., [1, 40, 43]) use context-free
grammars to approximately describe inputs with such rela-
tions. However, while context-free grammars can encode the
overall structure of individual interactions, they cannot readily
express the temporal properties (e.g., it would not be possi-
ble to express the create/use/delete/do-not-reuse constraints
explained above). On a high level, this is due to the fact that,
by the definition of context-free grammars, they fundamen-
tally only produce tree-shaped data structures. However, the
data flow, resulting from chaining multiple interactions, fun-
damentally creates directed acyclic graphs (DAGs). This is
well-known in the world of JavaScript fuzzers. Hence, many
modern JavaScript fuzzers use more complex formats, which
ensure that only previously initialized variables with correct
types can be used [25, 63]. Additionally, current implementa-
tions of grammar-based fuzzers are typically not very effective
at expressing binary data.

Another interesting example is SYZKALLER [55]. It was
designed specifically to fuzz kernel interfaces via syscalls.
These format specification typically can express initialization
/ use patterns. However, they are typically designed for one
specific use case, and cannot express the temporal properties
such as that closed resources are not to be reused later.
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Figure 1: Overview of NYX’s architecture. The architecture consists of three main components: (i) NYX’s novel fuzzing engine, (ii) a highly modified version of
KVM-PT which enables nested hypercall communication and hypervisor fuzzing, and (iii) a modified version of QEMU-PT to support fast snapshot reloads.

2.4 Affine Types

In many cases, the inability to express that a closed resource
is not reused later on is not a big problem. In other cases,
this can cause false positive crashes. For example, ignoring
a library’s contract will lead to false positive crashes (e.g.,
by passing a previously freed pointer to the library). These
are not interesting to us, as they do not represent a security
issue in the library, but rather simply our inability to properly
use the library. One can address this issue by using affine
types. Affine types are a class of type systems that ensure
each value is used at most once. Consequently, they ensure
that a resource is not reused after it was closed.

In this paper, we design a new formalism based on affine
types that allows to express these kinds of constraints with a
focus on versatility. The user specifies a set of opcodes. Each
opcode represents a single function call, and can take any
number of arguments, and return any number of values. The
arguments can either be consumed or borrowed. Once a value
was consumed, the fuzzer ensures that it will not be used in
future opcodes. Thus, one can effectively specify sequences of
affinely typed function calls. In a way, this approach is rather
similar to how the programming language Rust uses move and
borrow semantics. Using this mechanism, it becomes trivial
to express well-formed interactions such as the ones seen
in Listing 1. Note that this mechanism does not take away
our ability to express invalid sequences if we chose to do
so, it merely gives us the option to avoid them. For example,
we can still express the fuzzing algorithm of AFL by only
having a single handler with a vector of bytes. Consequently,
this approach allows us to find all kinds of bugs that other
current fuzzer can find. Yet, we can narrow down the search
drastically to achieve greater coverage and find bugs faster.

3 Design

In the following, we describe the design and the reasoning
behind the design choices of NYX. We start by giving an
informal threat model for hypervisor security. Based on this
threat model, we describe our fuzzing approach.

3.1 Threat Model

As hypervisors are used to enable provisioning of new VMs
in the cloud, they are a cornerstone of the modern Internet
and computing landscape. Whenever a user requires a new
cloud instance, a VM is created on demand, and the user has
full privileges inside the VM. To ensure scalability, many
such VMs run on the same physical host and the hypervisor
is the security boundary that separates different VMs. To
compromise other users’ VM, it suffices to escape one’s own
VM: once the attacker obtains hypervisor privileges, she also
typically has full control over all other machines running on
the same physical host. Consequently, we assume that the
attacker is able to run her own kernel and tries to exploit a
software vulnerability in the hypervisor.

3.2 Architecture Overview

To efficiently identify such security vulnerabilities by fuzzing
hypervisors, we have to tackle a number of challenges that
most current fuzzers do not address. More specifically, we
need a way to explore complex interfaces with multiple back
and forth interactions, while maintaining a deterministic and
controlled environment that allows us to observe the test cov-
erage. On a high level, our basic architecture is a virtual
machine introspection (VMI) based fuzzer similar to KAFL
and REDQUEEN, with a custom operating system similar to
HYPER-CUBE used as the agent component. We introduce
multiple novel techniques to make coverage-guided fuzzing
applicable to highly interactive targets. An overview of NYX’s
architecture is shown in Figure 1.

3.3 High Performance, Coverage-Guided
Fuzzing

Broadly speaking, there are two approaches to obtain the
coverage information necessary to perform feedback-guided
fuzzing: (i) compile-time instrumentation based approaches
and (ii) binary-only based approaches. We choose to use
binary-only coverage tracing, as we believe that requiring
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a custom compiler toolchain severely increases the effort
to obtain a working setup for fuzzing. With our setup, for
example, the binaries as published by major distributors can
be used with no further complications. Besides avoiding to
deal with the various build systems and compilers in existence,
this also ensures that we test the real software as it is delivered,
with the original compiler flags and patch sets. Since we fuzz
privileged code, the usual options such as dynamic binary
instrumentation (DBI) are excluded. Consequently, we use
Intel-PT based tracing to obtain code coverage information
with only a small performance overhead.

Stable and Deterministic Fuzzing To gracefully recover
from crashes in privileged code, we run the target software
inside a KVM VM. As our fuzzer is outside the VM, we
can restore the VM to a prior state after triggering a crash.
Even beyond handling crashes, we found that fuzzing real
hypervisors is very difficult: Both the target OS and the target
hypervisor maintain a significant amount of state that will
produce exceedingly noisy coverage traces results. To over-
come this issue, we extended QEMU-PT and KVM-PT with
the ability to perform very fast VM reload operations that
fully restore the state of the emulated hardware—including
all device state such as timing interrupts and clocks.

By using a hardware acceleration features called Page
Modification Logging (PML), KVM can efficiently identify
only those page frames in memory that need to be reset. We
maintain a full copy of the original state and an additional
dirty page tracker that allows us to quickly reset only the
dirty pages. In a similar manner, we circumvent the usual
device loading code used by QEMU-PT to speed up resetting
the device state. This way, we overcome most of the non-
determinism issues, even when tracing a whole hypervisor.
Lastly, we used a modified version of HYPER-CUBE OS [48]
to serve as the agent running inside of the target hypervisor.
This agent communicates with our fuzzer via the host hy-
pervisor (KVM-PT) by using hypercalls to bypass the target
hypervisor.

Communication with Nested Virtualization To be able
to directly communicate with the fuzzer from our agent OS,
we need to provide hypercalls from the agent running in L2
directly to KVM-PT. Due to the way nested virtualization is
implemented, hypercalls are passed to the host (KVM-PT)
first, and later forwarded to the target hypervisor running in
L1. Consequently, we implemented special hypercalls and
corresponding handlers that avoid being forwarded to the
target hypervisor. Additionally, the fuzzing logic and the agent
need to set up a section of shared memory to efficiently pass
the inputs from the logic to the agent.

3.4 Generic Fuzzing of Interactive Targets
Our fuzzing agent consumes a form of bytecode that describes
the actions it should take to interact with the target hypervi-
sor. In contrast to HYPER-CUBE OS, where the bytecode
is generated randomly in a blind fashion, in our case the
fuzzer generates and mutates the bytecode. To this end, the
user provides specifications that describe the bytecode for-
mat. This approach is somewhat similar to grammar-based
fuzzers [1, 40, 43]. However, we found that for specifying the
interfaces for interactive targets, context-free grammars are
not a very useful abstraction. Typed, bytecode-like specifica-
tions are much more useful, as they allow to properly refer to
existing and initialized variables. Similar designs were already
pioneered by JavaScript fuzzers such as FUZZILI [25] and
SYZKALLER. However, instead of a highly-specialized format,
we choose to develop a more general description mechanism
akin to context-free grammars. In contrast to context-free
grammars, our specification format allows to express types
and temporal usage patterns. As a consequence, NYX can be
directly applied to other targets such as kernels and ring-3 ap-
plications as well. This approach has also proven very helpful
in practice by allowing an efficient test-evaluate-adapt cycle
when developing specifications for new interfaces.

Affine Typed Specification Engine To allow generic
fuzzing of interactive systems, we provide the user with a
simple mechanism to describe a “grammar” of possible inter-
actions. As our goal behind this fuzzing engine was to be as
generic as possible, we aimed to build a mechanism as gen-
eral as context-free grammars, incorporating the constraints
discussed in Section 2.3.3. Specifically, we aim to express
general interactions with temporal create/use/delete/do-not-
reuse constraints. We achieve this by building a formalism
that can be used to describe strongly typed bytecodes. We then
use a custom compiler that generates C code from those byte-
code specifications. Special care is taken to make sure this C
code is easily embeddable into any target (no use of malloc
etc.). Each input is represented by a directed acyclic graph
(DAG). Each node is a single function call and each edge is
a typed value returned by the source function and passed to
the target function. Functions can take arguments either as a
value or as a reference. If an argument is used as value, it can
not be used later on by any other nodes. Thus, the value is
effectively deleted. If the value is passed as a reference, it can
later be re-used by other calls. Any node or function can take
an arbitrary number of inputs both as reference and value, and
return any number of values. In addition to those inputs and
outputs, each function can have an additional data argument
that can contain arbitrary tree-shaped data structures. We now
present a small example for the previously discussed use case
of opening, writing and closing files to illustrate our approach.
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path open write dup2 close
"/tmp/A" "foo"

P P F F F

F

F

Figure 2: The graph encoding of the input shown in Listing 1. Borrowing
arguments are shown as circles containing the type. Arguments that consume
the value are shown as square. The tree shaped structural data attached to
each node, is shown in red.

Example 1. In this case we consider 3 opcodes: open,
write, and close. The first opcode open(data:
Vec<u8>) -> File has no moved or ref arguments. It
only consumes a path (data string) and produces a file ob-
ject. The second opcode, write(file: &File, data:
Vec<u8>) takes a reference to a file object and again some
data that will be written and returns no value. Any number of
such write opcodes can reuse the same File object. The last
opcode close(file: File) consumes the File object,
and no further operations are possible on the file.

The graph encoding the test case shown in Listing 1 can
be seen in Figure 2. The input graphs generated from this
bytecode specification are stored in a very compact serialized
format. During fuzzing, they are stored, generated, and mu-
tated directly in the memory shared between the fuzzer and the
agent. Consequently, we avoid unnecessary copy operations
and perform no allocations to generate the graphs.

The target component parses the graph stored in the shared
memory. To ease this task, we automatically compile the byte-
code specification to a single C header file that implements a
bytecode interpreter. To compile the bytecode, the user has to
provide a C implementation of the behavior of each node. As
the tree-shaped data needs to be mutated, the fuzzer needs to
be aware of the structure and thus, they need to be described
in the specification. Consequently, the C structs representing
these values can be generated automatically. On the other
hand, the fuzzer does not need to modify or use the values
that are created in the edges. Hence, the user can use arbitrary
C types as edge types.

3.5 Applications beyond Hypervisor Fuzzing

While this paper focuses on hypervisor fuzzing, all of the
techniques described here are working with any other kind of
software as well. Our prototype is capable of fuzzing hypervi-
sors, operating systems, and ring-3 applications in a unified
framework. This kind of structural specification can be used to
express many different kind of fuzzing scenarios. For example,
in an offline experiment, we ported some of the SYZKALLER
specifications to our fuzzer. We also built a harness that al-
lows to explore the impact of fuzzing environment variables,
commandline arguments, as well as, STDIN and multiple files
as inputs to a ring-3 application at the same time.

4 Implementation Details

To be able to evaluate the impact of our design choices, we
implemented a prototype of our design. In this section, we
start by describing the steps we took to implement a high
performance, coverage-guided fuzzer backend which allows
us to run stable and deterministic fuzzing sessions. This in-
cludes getting coverage information, providing fast snapshot
reloads, and facilitating communication between the agent
and the fuzzer. We then describe the implementation details
of the fuzzing frontend that generates and mutates our affine
typed bytecode programs. The prototype implementation is
available at https://github.com/RUB-SysSec/nyx.

4.1 Backend Implementation
The backend basically has to provide three features to the
frontend: (i) It has to measure the coverage produced by a
given test input, (ii) it has to provide a stable environment
that can handle misbehaving targets, and (iii) it has to pro-
vide communication channels. We build upon QEMU-PT and
KVM-PT as released in REDQUEEN and extended the imple-
mentation with the capabilities discussed in Section 3. We
now discuss how we implemented these three components.

4.1.1 Fast Coverage

To obtain coverage information from the target hypervisor,
we use the Intel-PT decoder released by Aschermann et al. [2]
as a basis for our coverage measurement. However, we added
some improvements on top of the original code that aim to
increase the decoding performance. The decoder consists of
two components: the Intel-PT parser, and the disassembler
that follows the trace through a disassembled control flow
graph taken from a memory snapshot. We rewrote the decoder
to utilize an optimization technique known as “computed-
gotos”. As tracing the control flow through the disassembled
control flow graph is expensive, we also introduced a caching
layer. This layer can turn Intel-PT data directly into coverage
information (AFL-style bitmap entries [64]) if the same trace
fragments have been observed previously.

4.1.2 Fast Snapshot Reloads

Starting each test case from a clean snapshot is important to
obtain deterministic coverage results. If previous test cases
can affect the coverage produced by later test cases, coverage-
guided fuzzing performs significantly worse. One of the major
features of NYX is the ability to restore VM snapshots many
thousands of times per second. To implement rapid snapshot
reloads, we need to reload three components of the VM. First
of all, the register state of the emulated CPU itself has to be
reset. Secondly, we also need to reset all modified pages of the
memory used by the virtual machine. Lastly, the state of all
devices emulated in QEMU (including hard disks) needs to
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be reset. We now describe the details of the mechanisms used
to reset these components except for resetting the register
(which is trivial).

Fast Memory Resets To create a snapshot of the VM mem-
ory, we create a snapshot file that contains a dump of the
whole memory of the VM. We also implement a delta mecha-
nism that allows to create incremental update of this snapshot
file. Typically, we create one full snapshot per OS type, and
then use the delta snapshots at the start of the first input. To
create this snapshot, we implemented a hypercall that the
agent uses to inform the fuzzer that it should create the incre-
mental snapshot from which each test case will be started.

To quickly reset the memory of the VM, we use our own
dirty page logger in KVM-PT. By default, KVM already pro-
vides the capabilities to log which pages have been dirtied
since the last time the CPU entered the VM (VM-Entry).
However, since KVM’s technique requires us to walk a large
bitmap to find all dirty pages, we extended KVM-PT with the
capability to store the addresses of dirty pages in an additional
stack-like buffer. This can significantly accelerate the mem-
ory restoration process, especially in cases where only a few
pages have been dirtied. Additionally, we need to ensure that
memory that is changed by the devices emulated by QEMU-
PT is also reset. To this end, we track a second map where
VM pages modified by QEMU-PT are also noted. Before we
start the next execution, each page that was changed either
inside the VM (as tracked by KVM-PT) or by QEMU-PT is
reset to the original content from the snapshot.

Fast Device Resets Resetting the device state is a much
more involved procedure compared to resetting the memory
of the VM. As noted before, QEMU manages a multitude of
devices. QEMU also provides a serialization/deserialization
mechanism for each device, which is used to store snapshots
of running VMs on the hard disk. Each device emulator pro-
vides a specification for its state in form of a specific data
structure. QEMU iterates this data structure to identify fields,
integers, arrays, and so on. During serialization, these fields
get converted into a JSON string that can later be loaded dur-
ing deserialization. The whole process is painfully slow, but
ensures that VM snapshots can be loaded even on different
machines (where the compiler may change the in-memory
layout). To increase the performance, we mostly ignore these
device structure specifications. Instead, we log all writes once
during this process and obtain a list of all memory used by
the devices. Using this list, we can now reset the device’s
memory from our snapshot with a series of calls to memcpy. It
should be noted that a small subset of devices cannot be reset
like this, as they require to run some custom code after each
reset. We manually identified these devices in QEMU-PT
and call the original deserialization routine for these devices
specifically. Note that physical hardware which is used by the
guest via pass-through cannot be reset, as it is not possible to
access that state stored in real hardware.

Fast Disk Reset QEMU handles hard disks differently from
other devices. As their state is very large—potentially larger
than the available memory—the guest’s hard disk content
is stored on the host’s hard disk in a so-called qcow file. To
ensure we can handle targets that write files to hard disk,
we create our own overlay layer on top of QEMU’s qcow
handling. During the execution, we create a hashmap that
stores the content of modified sectors. This hashmap is stored
in memory and uses a fixed set of buffer of pages. Every read
access to the disk image is first checked against this hashmap,
and then against the original qcow file. We place an upper limit
on the number of sectors to be written during one test case to
ensure that misbehaving processes do not destroy the overall
fuzzing performance, similar to how AFL places limits on the
time and memory used per test case. Resetting the disk image
is then as easy as zeroing out the small hashmap. Critically,
we do not need to overwrite the actual disk data, as removing
the indices in the map suffices. Overall, this makes the reset
process highly efficient and effective.

4.1.3 Nested Hypervisor Communication

To intercept and distinguish our fuzzing hypercalls from nor-
mal hypercalls directed to the target hypervisor, we imple-
mented an additional, simple check in the host’s vmcall han-
dler routine. If a special value is placed in the RAX register by
the guest, the hypercall request is handled by KVM-PT. Oth-
erwise, this request is passed to the target hypervisor. To set
up a shared memory mapping between the host and the agent
OS, we need to allocate this memory region in L2 first. Using
our hypercall interface, we pass all physical addresses of our
allocated memory region to the host by executing a special
hypercall. The host translates all guest physical addresses to
host virtual QEMU-PT addresses and creates a shared mem-
ory mapping. A visualization of this procedure is given in
Figure 3 1©. This shared memory region is later used by the
fuzzing logic to receive messages from the agent OS or to
pass new generated inputs to the agent. Prior to entering the
fuzzing loop, the agent OS (L2) executes a special hypercall
to create the snapshot for the fuzzing loop. The hypercall is
handled by KVM-PT, and instead of relaying it to the target
hypervisor (L1), another VM exit reason is passed. On the
next VM entry transition from the target hypervisor to the
agent OS, the snapshot will be created by QEMU-PT. This
procedure is visualized in Figure 3 2©. Once the fuzzing en-
gine has generated a new input, the snapshot is restored, and
the execution is continued in the agent OS running in L2. On
each transition from L2 to L1, Intel PT tracing is enabled,
and disabled vice versa. This communication is shown in
Figure 3 3©.
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Figure 3: Overview of NYX’s hypercall interaction between the various components: fuzzing logic, QEMU-PT, KVM-PT, L1 guest, and agent OS.

4.2 Fuzzing Frontend for Affine Typed Byte-
code Programs

The main task of the fuzzing frontend is to generate candidate
inputs and to pass the inputs to the agent OS. We implemented
our own fuzzing frontend in Rust. This frontend is specifically
designed to generate and mutate the bytecode inputs and we
now describe the relevant details of our implementation.

4.2.1 Representation of the Bytecode

As noted earlier, we take great care in NYX to enable fast
and effective input generation. Each input is stored in two
arrays. The graph layout is stored in one array of u16 integers.
The additional tree-shaped data arguments are stored in a
byte array. This flat, pointerless format allows fast generation
and sharing via shared memory. Each node/opcode has a
fixed number of arguments and outputs. We allow up to 216

different node types, each with a unique ID. To encode a
given node, we first push the type ID, and then one edge ID
for each argument and return value. All edge IDs introduced
as a return value can then be used as argument IDs for later
nodes.

Example 2. Consider the input in Listing 1. Assume
the ID for the variable path is p and the ID for the
variable file is f. The graph would be encoded into the
following array: [n_new_path_id, p, n_open_id,
p, f,n_write_id, f, n_dup2_id, f, f,
n_close_id, f]. To encode the first opcode
path=new_path("/tmp/A"), we first push the ID
of new_path (n_new_path ), then we push the ID of the
only return value (p). Note that we ignore the additional data
argument for now. We encode the remaining nodes in the
same fashion by pushing the node ID and then the edge IDs
for each argument or return value.

The additional tree-shaped/binary data attached to each
node is stored in a second buffer. As we know what kind of
data is attached to each node, the values are simply concate-
nated. For binary data that is dynamically sized (e.g., strings
or byte vectors), the size is prefixed.

Example 3. When considering the graph representing the
input in Listing 1, we would encode the binary data used
as additional arguments to new_path and write as:
[7,"/tmp/A\0",4,"foo\0"]. Here, 7 and 4 are the
lengths of the following strings. The strings are stored as raw
bytes.

4.2.2 Generating Bytecode Interpreters

To interpret the results, we automatically transpile the speci-
fications into a single C-header interpreter for the bytecode.
The user simply has to fill in the functions for each opcode.
This interpreter uses the information provided in the specifi-
cation to iterate both memory buffers, keep track of the values
that are passed along the edges in the graph, and call the user-
provided functions for each node. In our example, we used
HYPER-CUBE and linked this interpreter into HYPER-CUBE
to produce a fuzzing agent for NYX.

5 Evaluation

We use our prototype implementation of NYX to evaluate the
results of our design choices. In particular, we aim to answer
the following five research questions:

• RQ 1. How does NYX compare to state-of-the-art ap-
proaches such as HYPER-CUBE and VDF?

• RQ 2. Does coverage guidance improve generative
fuzzing?
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• RQ 3. What are the performance gains provided by the
structured mutation engine?

• RQ 4. What is the performance impact of fast reloads?

• RQ 5. Can NYX find previously unknown vulnerabilities
in well-tested parts of hypervisors?

As we will see, NYX drastically outperforms VDF on
almost all devices and performs comparable or better than
HYPER-CUBE on all but one device. In four cases, NYX dras-
tically outperforms HYPER-CUBE, using specifications that
are chosen to mirror the behavior of HYPER-CUBE. If we
use properly customized specifications, the results are im-
proved further. We were able to uncover 44 new bugs, many
of which represent serious security issues. Using the fast
snapshot restoration allows us to reset the whole VM with a
performance characteristics comparable to AFL’s fork server.

5.1 Evaluation Setup
All experiments were performed on Intel Xeon Gold 6230
CPUs. Each machine had 40 physical cores and 192GB of
memory as well as an SSD. We pinned each fuzzer to one
physical core and did not use hyper-threading. Each experi-
ment was repeated ten times to obtain statistically significant
results [32]. In all plots, the lines mark the median of the ten
runs, and the shaded area display the best and worst run respec-
tively. We targeted QEMU 5.0.0 and bhyve 12.1-RELEASE.
VDF was evaluated on older versions of QEMU and we can
only compare with the numbers reported in the paper. While
this slightly reduces the strength of the comparison to VDF,
we believe it is much more meaningful to fuzz modern, well-
tested software. Additionally, VDF was already shown to
be significantly slower than HYPER-CUBE. We also repeat
the HYPER-CUBE experiments using the newer version of
QEMU and observe very similar results.

5.2 Fuzzing Device Emulators
In the first experiment, we compare NYX against HYPER-
CUBE and VDF to answer RQ 1.. We used the open-source
version of HYPER-CUBE, but unfortunately VDF is not
openly available. Therefore, we follow the authors of HYPER-
CUBE and compare against the numbers published in the
VDF paper. While the authors of VDF evaluated for approx-
imately 60 days, the authors of HYPER-CUBE managed to
beat VDF in both terms of coverage found and bugs found
in only ten minutes. As we are not able to reproduce the ex-
act hardware that VDF used for their experiments, we too,
choose to drastically reduce the time for evaluation. However,
since NYX performs many complex operations such as mini-
mizing new inputs found, we also extended the experiments
to 24 hours each. To compare fairly against HYPER-CUBE,
we created specs that very closely represent HYPER-CUBE’s
operations (NYX-Legacy) and used both fuzzers to target QE-
MU/KVM. As we will later see, NYX can perform even better

using custom specifications for specific targets. To demon-
strate the impact of specs on NYX’s performance, we also
added another complex device (XHCI).

We ran the target VM with Gcov, and restarted it every
10 minutes or after each crash, to dump the coverage. This
way, we could obtain coverage plots over time, as otherwise
only the final coverage could be reported. The coverage found
over time is shown in Figure 4. Note that this figure only
contains those devices where non-trivial differences in perfor-
mance where observed. The full set of results can be found
in the Appendix. We also display the overall results in Ta-
ble 1. As can be seen, our approach easily surpasses VDF in
all (but two) scenarios. After manual inspection, we believe
that the difference in coverage between VDF and NYX is
due to the fact that the code changed since VDF performed
their experiments and that the observed difference does not
represent a real difference in performance. Compared to the
blind fuzzer HYPER-CUBE, we see that in all but six cases,
NYX and HYPER-CUBE perform identical or nearly identical
(Though NYX might sometimes need a few more minutes to
reach the same coverage). Since many device emulators have
rather simple control flows (many do not even contain loops),
this is not entirely surprising.

However, on the more complex devices, the advantages of
coverage-guided fuzzing begin to show. Over a reasonable
time frame (typically the first few hours), the advantages begin
to outweigh the additional cost. This effect is particularly
pronounced in the complex examples where HYPER-CUBE
stops making any progress very early. Hence, NYX produces
drastically more coverage on four of the six devices, which
also answers RQ 2.. On the other two devices (SoundBlaster
and E1000), HYPER-CUBE performs better. We investigate
SoundBlaster and believe this is due to interrupt handlers
which are triggered after specific timeout interrupts occur.
These timeouts are never triggered due to the short time span
of our test cases and the subsequent VM resets. We believe a
similar mechanism affects our performance on E1000.

5.3 Structured and Coverage

To further substantiate the impact of proper structure defi-
nitions (RQ 3.), we studied the Intel specifications for the
eXtensible Host Controller Interface (XHCI) and built speci-
fications that specifically target this device. Besides the usual
MMIO operations that are required to actually interact with
the device emulators, this also includes setting up complex
data structures in the guest’s memory. For example, the XHCI
USB Host Controller uses multiple linked list for different
purposes to be handled. The MMIO access then only writes
the pointer to the head of the list, and the device iterates the
list on its own. We created a specification that allows to setup
such memory structures in the guest. Using this specification,
we performed another set of runs. To answer RQ 3., we com-
pare the results of the legacy specification that emulates the
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Figure 4: Overview of the median, best, and worst branch coverage across 10
experiments. We only display the 6 devices with relevant differences between
NYX using the legacy spec and HYPER-CUBE.

behavior of HYPER-CUBE and our more detailed specifica-
tion. The results can be seen in Figure 5. As the experiment
results show, using more detailed specifications drastically
increases the performance of the fuzzer. While in the previous
experiment, coverage guidance on helped in the long term,
and HYPER-CUBE dominated for the first hour of fuzzing,
here we can see that such specifications are showing drastic
improvements in performance from the very first moment on.

To further confirm our claim that coverage guidance is
in fact helpful (RQ 3.), we perform a second experiment
comparing coverage-guided and non-coverage-guided fuzzing
with these more detailed specifications. As we could not inte-
grate them into HYPER-CUBE, we instead used NYX, but dis-
abled the coverage guidance mechanism. Thus, we compare
a blinded version of NYX with the normal, coverage-guided
version of NYX. This allows us to specifically identify the
impact of coverage guidance in the presence of structured
fuzzing. The result are also shown in Figure 5. As we can see,
without coverage guidance, the more complex specifications
added very little coverage. However, in combination with cov-
erage guidance, the ability to find deeper code paths increased
massively. While it might seem somewhat surprising that the

Table 1: Branch coverage by NYX using a legacy specification and HYPER-
CUBE in 24 hours (compared to VDF with multi-month experiments). If the
differences between NYX and HYPER-CUBE are statistically relevant with
p<0.01 according to a Mann-Whitney-U test, the better result is printed bold.
∆ denotes the difference in percentage points between NYX and HYPER-
CUBE.

VDF HYPER-CUBE NYX

Device Cov Cov Cov ∆

AC97 53.0% 100.00% 98.92% -1.62
CS4231a 56.0% 74.76% 74.76% -
ES1370 72.7% 91.38% 91.38% -

Intel-HDA 58.6% 79.17% 78.33% -0.84
SoundBlaster 81.0% 83.80% 81.34% -2.46

Floppy 70.5% 84.51% 83.10% -1.41
Parallel 42.9% 38.61% 38.61% -

Serial 44.6% 73.76% 73.76% -
IDE Core 27.5% 74.87% 74.69% -0.18

EEPro100 75.4% 83.82% 83.82% -
E1000 81.6% 66.08% 54.55% -11.53

NE2000 (PCI) 71.7% 71.89% 71.89% -
PCNET (PCI) 36.1% 78.71% 89.49% +10.78

RTL8139 63.0% 74.68% 79.28% +4.60
SDHCI 90.5% 81.15% 88.93% +7.78

XHCI - 64.70% 69.93% +5.23

specifications offer so little without coverage guidance, this
can actually be explained by the fact that a significant number
of integer parameters need to be chosen properly to generate
interesting structures from the specification. Without the cov-
erage feedback, picking the right shape and the right values
is exceedingly unlikely.

5.4 Fast Snapshot Reload Performance

To quantify the performance impact of our fast VM reloads,
and to answer RQ 4., we perform two experiments on the
reload performance. Since reloading the register- and device-
state is independent of the fuzzing target, the reload perfor-
mance is primarily determined by the number of dirty pages
that need to be restored. As our fuzzer is also able to fuzz ring-
3 applications, we created a small test application that dirties
a given number of pages on each execution. To inspect the
behavior, we perform measurements with different numbers
of dirty pages. The results can be seen in Figure 6. Device
reloads create an additional performance cost, even when no
pages need to be reset. As expected, as more and more pages
are reset, the performance gets gradually worse. Overall, for
large resets we approach the memory throughput.

To put these numbers in relation to similar mechanisms,
we also compare with AFL’s forkserver and QEMU’s normal
snapshot restoration mechanism. We use the same ring-3 ap-
plication as before and note the number of executions AFL’s
forkserver achieves depending on the number of dirty pages.
As expected, for very small deltas, the forkserver is slightly
more effective, yet as the number of modified pages grows, the
performance differences shrink. In contrast, QEMU always
restores the full snapshot. Hence, the performance remains
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Figure 5: Comparing the code coverage found on XHCI by the legacy spec-
ification and more detailed specifications across 10 runs. The dotted lines
show the performance that NYX achieved, if used as a blind fuzzer.

constant, until running the application which accesses large
amounts of memory begins to affect the performance.

For realistic workloads, our snapshots reloads are multiple
orders of magnitude faster than QEMU’s internal snapshot
restoration mechanism, and we are able to perform about 60%
as many test cases compared to AFL’s forkserver. While ob-
taining similar performance, NYX reloads perform a lot more
tasks than the fork server: we observe that when the target
only dirties ten pages, we reload almost a 100 pages in the
kernel. We also reset all of the devices’ state, including hard
discs. This also shows up in the number of pages reloaded:
When fuzzing more complex targets that modify the disc state,
this becomes fundamental.

When using NYX in offline experiments, we observed that
fuzzing programs like Bash with AFL is very hard: great
care has to be taken to ensure that script interpreters do not
overwrite or remove any relevant files. Similarly, they do
tend to quickly fill up the disc with junk. All of these issues
are mitigated by the snapshot restoration process. Lastly, we
observed similar performance when fuzzing target programs
under Windows. This is a significant advantage, as Windows
does not offer the performance gains of a forkserver, which
significantly slows down the fuzzing process.

5.5 New Vulnerabilities
Besides analyzing the coverage, we also used our fuzzer to
find novel bugs. To this end, we picked all the devices from
Section 5.3 as well as some additional ones that we could
not use to compare coverage for various reasons. For ex-
ample, we evaluated various VirtIO devices on bhyve such
as (virtio_blk, virtio_net, and virtio_serial) that are
not readily supported by HYPER-CUBE.

Figure 6: Comparing raw executions per second for targets that dirty N pages,
with an AFL forkserver, QEMU’s loadvm snapshot restore functionality, and
NYX’s fast full-system reloads.

Table 2: Overview of vulnerabilities found by NYX in our targets.

Hypervisor Type #Bugs

QEMU

Use-After-Free (Write) 1
Heap-based Buffer Overflow (Write) 1
Stack Overflow 1
Infinite Loop 1
Segmentation Fault 3
Abort/Assertion 9

BHYVE
Segmentation Fault 14
Infinite Loop 1
Assertion 13

During the evaluation, we identified 44 manually verified,
unique crashes. An overview of the types of crashes found is
shown in Table 2, a full list of the crashes with more details
on the exploitability can be found in the Appendix. All bugs
were reported in a coordinated way and CVEs were requested
for all memory corruption issues. Many of the bugs were fixed
and some are still being actively discussed on the maintainers’
mailing lists. Even after QEMU and bhyve were fuzzed by
HYPER-CUBE, NYX finds a significant number of serious
issues in both hypervisors, answering RQ 5..

In the following, we provide a more in-depth look at some
of the bugs found.

Case Study: bhyve Infinite XHCI TRB Loop. The XHCI
device implementation of the bhyve hypervisor is vulnerable
to a denial-of-service attack via an infinite loop in the host.
According to the XHCI specification, the guest’s driver has to
setup and maintain multiple memory regions in its physical
memory to communicate with the XHCI USB controller and
its attached USB devices. A set of data structures called TRBs
(Transfer Ring Blocks) are used for bi-directional communi-
cation. Link TRBs are used to link multiple memory chunks
together to implement rings across non-continues memory
regions. By configuring a crafted TRB ring array containing
a Link TRB pointing to itself, the emulator gets stuck in an
infinite loop in the function pci_xhci_trb_next.
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Case Study: QEMU EE100Pro Stack Overflow via Re-
cursive DMA Requests. NYX uncovered a stack-overflow
vulnerability in QEMU’s DMA mechanism used by the
EE100Pro device emulator. The EE100Pro device relies on
the CU (Command Unit) and RU (Receive Unit) to send com-
mands and receive data from its guest. By configuring the CU
base and offset register to point to its own PCI MMIO BAR
with a specific offset and a write accesses to the command
register thereafter, the device emulator will perform a DMA
write access to the same MMIO register and initiate the same
DMA access again. This will lead to stack exhaustion and a
crash, which can be exploited by a malicious guest.

Case Study: QEMU SDHCI Heap-based Buffer Over-
flow. The SDHCI device performs read and write opera-
tions in blocks. The size of these blocks can be set with
the SDHC_BLKSIZE. Each read and write command moves
the data_count cursor of the data buffer fifo_buffer
forward until the blksize is reached. For larger data, the
SDHC_SYSAD command allows multi-block transfers and starts
at the data_count cursor.

When a new block size is set with the SDHC_BLKSIZE com-
mand, the data_count cursor is not reset and the block size
is also not checked against 0. This allows an attacker to first
set a high block size, move the cursor at an arbitrary position,
then set the block size to 0 and issue a multi-block transfer.
The length is calculated as 0 - data_count, which results
in an arbitrary heap out-of-bounds write up to the size of the
uint16_t or the maximum buffer size, whatever is lower.

Coordinated Disclosure. In total, we reported 44 bugs to
the maintainers. 7 security issues were directly reported to
and acknowledge by the QEMU security team according to
their security process. Currently, the QEMU security team
assigned four CVEs (CVE-2020-25084, CVE-2020-25085,
CVE-2020-25741, CVE-2020-25743) for fixed and published
issues. While in general it is hard to evaluate the exact security
impact of bugs found without actually spending time to write
an exploit, we believe that most memory corruption issues
could be exploited under the right circumstances. Another
15 security issues in bhyve were reported to the FreeBSD
security team with pending CVEs assigned by MITRE.

Other non-critical security issues, such as assertion failures,
were publicly reported through launchpad.net for QEMU
bugs (#1883728, #1883729, #1883732, #1883733, #1883739,
#1525123, #697510, #1681439, #1810000) and the FreeBSD
bug tracker for bhyve findings.

6 Related Work

In recent years, fuzzing has shown exceptional results on un-
covering bugs in software systems. This trend was started
by a coverage-guided fuzzer named AFL [65]. To improve
upon AFL, a large number of researcher tried to improve

AFL’s input mutation algorithm [1, 2, 27, 40, 43] and its abil-
ity to identify bugs [4, 5, 31, 37, 39, 58]. Other approaches fo-
cused on improving feedback mechanism in coverage-guided
fuzzers [16,19,30,33,57]. Additionally, improved scheduling
algorithms have been researched extensively [8–11, 46, 59].
A more in depth discussion on various recent advances in
fuzzing can be found in Manès et al.’s overview [35].

Next to generic improvement over AFL’s design and imple-
mentation, some research proposed a hybrid software testing
method which combines feedback fuzzing with concolic exe-
cution [20–22, 26, 36, 50, 56, 62, 66]. Similar to the concolic
execution based approaches, others tried to improve fuzzing
by adding taint tracking [14, 45]. Lastly, various researchers
focused on improving the raw throughput of various compo-
nents of modern fuzzers [51, 61].

Snapshots were already used in the context of testing.
AFL’s fork server can be seen as a primitive ring-3 snapshot
mechanism. Dong et al. used snapshots for testing Android
apps [17]. However, their approach takes approximately nine
seconds to restore a single snapshot, rendering them infeasi-
ble for our purposes. Recently, Falk used a similar mechanism
to quickly reset the memory of VMs [18], however that im-
plementation does not support emulated devices.

To apply fuzzing to a wider set of targets, coverage-guided
fuzzers for ring-0 targets were developed [29, 41, 49, 55, 60].
Additionally, some recent research expanded the fuzzing ap-
proach into the IoT and embedded systems domain [15, 34].
Beyond ring-0, fuzzing was also applied to hypervisors [23,
28, 48, 52]. For example, VDF [28] implements a coverage-
guided hypervisor fuzzing approach. Recently, Schumilo et
al. introduced HYPER-CUBE, a blind fuzzer for hypervi-
sors [48]. Various researchers also implemented other blind
hypervisor fuzzers [12, 23, 38, 47].

7 Discussion

In this paper, we describe an approach to fuzz hypervisors us-
ing coverage guidance. The recent success of HYPER-CUBE
put the viability of coverage-guided fuzzing for hypervisors
into question. Our evaluation shows that coverage-guided
fuzzing is indeed working as expected. Consequently, the
fundamental problem behind VDF is not the overhead of
coverage-guided fuzzing per se, but their implementation. A
properly implemented and sufficient optimized whole-system
fuzzer design is capable of outperforming HYPER-CUBE.
However, to this end, current fuzzers need to apply a set of
changes: first, we need a way to obtain code coverage from
all code regardless of the protection ring it is running under.
Second, they need to handle the high non-determinism using
fast snapshot reloads. Last, the mutator needs to understand
the interactive nature of the inputs. As the authors of HYPER-
CUBE already noted, coverage-guided fuzzing adds a lot of
value when fuzzing more complex devices.
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While our approach is versatile and much faster and eas-
ier to use than VDF, and in many cases outperforms even
HYPER-CUBE, it also has some drawbacks: it is slightly more
complex to setup than HYPER-CUBE, as the target hypervisor
needs to run inside KVM-PT. For most hypervisors, this is not
particularly challenging, as KVM-PT fully supports nested
virtualization. However, using nested virtualization allows us
to easily recover from crashes. HYPER-CUBE needs to restart
the whole process after each crash, and typically has a very
hard time to overcome early crashes triggered by overzealous
assert statements.

Creating Specifications Additionally to running the target
hypervisor in a nested configuration, the user also needs to pro-
vide a specification. While we have demonstrated that even
the uninformed specification that closely mirrors HYPER-
CUBE’s behavior is already quite useful, most of the times a
more precise specification is helpful. Designing a specifica-
tion is quite similar to designing a grammar for well-known
fuzzers such as NAUTILUS [1], PEACH [54], or SULLEY [44].
The biggest part of the effort is not to produce the specifica-
tion, but to obtain a sufficient understanding of the target. In
our case, we spent about two days on our most complex spec-
ification. Understanding the structures required to perform
VirtIO took by far the biggest amount of work. Writing the
specification based on this understanding took only a very
small fraction of the time (around two hours).

Long-Running Interactive Fuzzing Our fuzzer still main-
tains one aspect of current coverage-guided fuzzers: each
small input is tested in isolation after a mutation. It would be
very interesting to explore long-running interactive fuzzing:
instead of generating small inputs outside of the VM, a large
stream could be generated from a given seed inside the target
VM. While the original HYPER-CUBE logic generates inter-
actions within the VM, KVM-PT would observe the coverage
from the outside until new coverage is found.

8 Conclusion
In this paper, we introduced an approach to fuzz highly com-
plex and stateful interactive targets. While this paper focuses
on hypervisor fuzzing as one example of such systems, all
the techniques introduced here work as well to fuzz any other
kind of software. We are convinced that both super fast, full
VM reloads and structured fuzzing of interactive applications
are valuable additions to current fuzzers, no matter of the
target. We have demonstrated how coverage-guided fuzzing
can beat blind fuzzing, even when the blind fuzzer is able to
produce far more interactions per second. While blind fuzzers
such as HYPER-CUBE are conceptually much simpler, and—
if implemented properly—can provide a much larger number
of such interactions, they will struggle to sufficiently test the
less common parts of the application. Using fast snapshots
provides near-perfect reproducibility. By using coverage guid-
ance, the hard-to-hit parts of the target are explored much

more thoroughly. As a consequence, we find more bugs and
in most cases more coverage while using the same specifica-
tion. Similarly, using our affinely typed bytecode specification
format, it becomes simple to generate much more complex
specifications for any given use case, further increasing the
coverage and number of bugs found.
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Appendix

A List of Bugs

Table 3: Bugs found by NYX in our targets. QEMU CVEs were assigned by the maintainers if the issues was fixed. The remaining issues marked as requested are
still under investigation. The BHYVE maintainers have not yet assigned CVEs, and CVEs were reserved by MITRE instead.

Hypervisor Type CVE

QEMU

Use after free (write) in usb_process_one CVE-2020-25084
Heap buffer overflow (write) in sdhci_sdma_transfer_multi_blocks CVE-2020-25085
Stack overflow in eepro100_write_command requested
Infinite loop in start_xmit requested
Segmentation fault in blk_inc_in_flight CVE-2020-25741
Segmentation fault in pci_change_irq_level CVE-2020-25742
Segmentation fault in blk_bs CVE-2020-25743
Abort in xhci_alloc_device_streams -
Assertion in address_space_unmap -
Assertion in usb_packet_copy -
Assertion in xhci_find_stream -
Assertion in xhci_kick_epctx -
Assertion in usb_ep_get -
Assertion in lsi_do_dma -
Assertion in ide_cancel_dma_sync -
Assertion in ide_dma_cb -

BHYVE

Infinite loop in pci_xhci_trb_next RESERVED
Segmentation fault in pci_xhci_cmd_eval_ctx RESERVED
Segmentation fault in pci_xhci_cmd_reset_device RESERVED
Segmentation fault in pci_xhci_cmd_address_device RESERVED
Segmentation fault in pci_xhci_complete_commands RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in pci_xhci_insert_event at pci_xhci.c RESERVED
Segmentation fault in ahci_handle_slot at pci_ahci.c RESERVED
Segmentation fault in ahci_handle_slot at pci_ahci.c RESERVED
Segmentation fault in vq_has_descs RESERVED
Segmentation fault in vq_kick_disable RESERVED
Segmentation fault in pci_vtcon_notify_tx RESERVED
Segmentation fault in vq_endchains RESERVED
Segmentation fault in pci_vtcon_control_tx RESERVED
Assertion in pci_xhci_cmd_config_ep -
Assertion in pci_xhci_cmd_reset_ep at pci_xhci.c -
Assertion in pci_xhci_cmd_reset_ep at pci_xhci.c -
Assertion in pci_xhci_cmd_set_tr at pci_xhci.c -
Assertion in pci_xhci_cmd_set_tr at pci_xhci.c -
Assertion in pci_xhci_get_dev_ctx -
Assertion in ahci_build_iov -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -
Assertion in pci_vtblk_proc at pci_virtio_block.c -

B Coverage Plots

Figure 7: The median, best, and worst branch coverage of 10 runs (24h each).
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