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Abstract

Coverage-guided fuzz testing (“fuzzing”) has become main-
stream and we have observed lots of progress in this research
area recently. However, it is still challenging to efficiently
test network services with existing coverage-guided fuzzing
methods. In this paper, we introduce the design and im-
plementation of Nyx-Net, a novel snapshot-based fuzzing
approach that can successfully fuzz a wide range of targets
spanning servers, clients, games, and even Firefox’s Inter-
Process Communication (IPC) interface. Compared to state-
of-the-art methods, Nyx-Net improves test throughput by
up to 300x and coverage found by up to 70%. Additionally,
Nyx-Net is able to find crashes in two of ProFuzzBench’s
targets that no other fuzzer found previously. When using
Nyx-Net to play the game Super Mario, Nyx-Net shows
speedups of 10-30x compared to existing work. Moreover,
Nyx-Net is able to find previously unknown bugs in servers
such as Lighttpd, clients such as MySQL client, and even
Firefox’s IPC mechanism—demonstrating the strength and
versatility of the proposed approach. Lastly, our prototype
implementation was awarded a $20.000 bug bounty for en-
abling fuzzing on previously unfuzzable code in Firefox and
solving a long-standing problem at Mozilla.

CCS Concepts: • Security and privacy→ Systems secu-

rity; • Software and its engineering→ Software verifi-

cation and validation.
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1 Introduction

In the last years, we have seen a lot of research progress in
the field of fuzzing—both in academia [3, 12, 17, 28, 31, 45,
53, 57, 69, 71] and in industry [18, 34, 48, 70]. The majority
of improvements made in the last years have focused on
improving fuzzing algorithms themselves. However, it is
slowly becoming apparent that improvements for fuzzing on
the algorithmic level have less impact in practice compared
to improvements to the ability to fuzz new targets. Any
application that is fuzzed for the first time is likely to result
in many security-relevant findings [7]. As a result, we are
currently observing a shift towards making it feasible (and
even easy) to target new applications or systems.
The two most common approaches to achieve this goal

are generating function-style harnesses for persistent mode
fuzzers such as libFuzzer [5, 29, 31, 48] or fuzzing based on
snapshots taken at the start of the test case [16, 53, 56]. While
these approaches address some of the problems of harnessing
targets, none of them allows proper harnessing of systems
with many messages that are being passed back and forth
(e.g., network services). Such services pose a unique set of
challenges distinct from “parse a binary blob” fuzzing targets:
the target applications are typicallymuchmore stateful, more
complex (and hence slower), and the message formats are
often more complex than individual file formats.

Such applicationsmake up a significant fraction of interest-
ing attack surface. Yet, little has been done to allow effectively
fuzzing and harnessing such targets with coverage-guided
fuzzers. The notable exception is AFLnet [47], which runs
the target and creates new connections for each test input.
While this approach has long been used to fuzz network
services in blind fuzzers, its drawbacks has made coverage-
guided network fuzzing exceedingly difficult. First, using
network connections is significantly slower than reading
from a file. Second, as the service is running persistently, the
fuzzer has no clear point at which the service is ready to
receive a test case; such fuzzers require waiting for manually-
specified, fixed periods of time during startup, and use similar
timeouts when handling each test case. Third, reusing the
same process (without fully restarting the server) is also
“noisy”: for example, background threads in the service can
randomly get scheduled independently of the test cases the
fuzzer sent. These seemingly random code paths still affect
the fuzzer’s coverage and introduce pointless inputs into the
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Figure 1. Visualizing Nyx-Net’ use of incremental snapshots to solve a hard Super Mario Bros. level: red paths are taken once to create an incremental
snapshot. For each snapshot, a number of test cases (green paths) are performed. Note how Nyx-Net also uses “old” positions to create snapshots.

queue. Similarly, great care has to be taken to ensure that the
target is not operating based on state introduced by previous
test cases. To this end, AFLnet requires a user to write a
“cleanup” script that is solely responsible for ensuring that
all changes to the file system, databases, etc. are rolled back
after each test case. Building such a script based on spurious,
non-reproducible inputs can require a significant effort.
In this paper, we present the design and implementation

of Nyx-Net, a fuzzing method that is able to test complex,
stateful message-passing systems such as network services.
Our approach is based on the following design principles:
first, we use hypervisor-based snapshot fuzzing [53, 54, 56] to
ensure noise-free fuzzing and to speed up resetting to a clean
state. Second, we propose selective emulation of network
functionality to avoid the heavy cost of real network traffic.
This also allowsNyx-Net to accurately control when packets
are consumed to avoid guessing the right timeouts.

Our prototype implementation of Nyx-Net is built on top
of Nyx [53], which it enhances with a set of new capabil-
ities. Most importantly, we enable Nyx to target network
connections and add support for handling the network stack.
We also extend Nyx’s snapshot capabilities by introducing
incremental, whole-VM snapshots. The snapshot mechanism
is agnostic of the OS running in the VM. Using such snap-
shots increases performance and ensures that all state is
properly reset between each test case. Furthermore, using
such snapshots allows us to emulate a significant fraction
of the network APIs: we run the target until a snapshot is
taken without major interference (i.e., close to native speed).
When the hooks detect that the target is about to receive
the first bytes of fuzzer-supplied input, we take a whole-
system snapshot. Following this snapshot, we now emulate
the network interactions of the target connection to further
increase speed. As our evaluation shows, precisely emulating
all network interactions is a difficult task. By only emulating
the (few) operations on the target connection, we reduce the
need to emulate all I/O functionality faithfully. While we
tested our prototype implementation only on two different
Linux VM setups (busybox and Ubuntu) as well as targets
running inside a Docker container inside of a Ubuntu VM,
Nyx-Net’s network emulation layer should be compatible
with any POSIX-compliant system.

Note that Nyx-Net is not limited to network interface
fuzzing. Instead, our approach can fuzz any complex, stateful
message-based target such as Inter-Process Communication

“Hence, we believe that a system testing approach is the only viable
solution for [...] IPC testing. One [...] approach [...] could be to [...]
perform a snapshot of the parent [..] and then replace [..] child
messages [...]”
— Blogpost - Security Team at Mozilla

Figure 2. Excerpt taken from Mozilla’s blogpost [32] on IPC-Fuzzing.

(IPC) interfaces. For example, Firefox splits safety-critical
parts of its codebase into isolated sandbox processes that
communicate via various IPC methods such as Unix domain
sockets and shared memory. We show that Nyx-Net can
efficiently and effectively test these IPC interfaces. In fact,
after seeing that Mozilla was looking for a tool like Nyx-
Net, we reached out to them and they decided to integrate
Nyx-Net into their testing pipeline after finding multiple
security issues using. Excerpt from Mozilla’s blogpost on the
challenges of IPC fuzzing [32] and their statement regarding
Nyx-Net are shown in Figure 2.
As our evaluation shows, Nyx-Net drastically improves

upon the state-of-the-art: compared to AFLnet on their own
benchmark ProFuzzBench [40], we are able to improve test
throughput by up to 300x and coverage found by up to 70%.
Compared to Agamotto [56], the state-of-the-art in snap-
shot fuzzing kernel modules, Nyx-Net is able to perform
both snapshot reload and creation operations almost 10x
faster. Additionally, Nyx-Net is able to find crashes in two
of ProFuzzBench’s targets that no other fuzzer could de-
tect previously. In an evaluation with the game Super Mario
Bros., we show that Nyx-Net is able to solve most levels
about 10-30x faster than the state-of-the-art (AFL + Ijon [3])
— demonstrating it’s ability to improve the performance of
message-based targets unrelated to networking (see Figure 1
for a visualization). In fact, when running in parallel, Nyx-
Net is able to solve some levels “faster than light”: solving
the level takes less wall-clock time than playing the level
perfectly even once. Nyx-Net is even able to exploit a glitch
to solve a level that the authors of Ijon believed to be un-
solvable. Lastly, Nyx-Net is not only able to find previously
unknown bugs in servers such as Lighttpd, but also network
clients such as MySQL client, and even Firefox’s IPC.
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In summary, we make the following key contributions:
• We introduce Nyx-Net, an efficient fuzzing method
that uses hypervisor-based snapshot fuzzing and selec-
tive emulation of network functionality to avoid the
heavy cost of handling the full network traffic.

• We study the concept of incremental snapshots in
fuzzing for complex and slow targets, and show that
our approach is able to efficiently test different types
of client and server systems.

• In our evaluation, we show that Nyx-Net outperforms
state-of-the-art fuzzing tools by more than an order
of magnitude in many benchmarks. Furthermore, our
prototype implementation found multiple unknown
bugs in complex, real-world software.

To foster research, we release Nyx-Net under an open-
source license at https://github.com/RUB-SysSec/nyx-net.

2 Technical Background

We now discuss the technical difficulties of fuzzing real-
world network services. We specifically focus on the ap-
proach used by existing methods to perform network fuzzing.
SinceNyx-Net is based onNyx, we also address the technical
aspects of Nyx that are relevant to this work.

2.1 Network Service Fuzzing

Many widely used network services and servers are still
written in memory unsafe languages for performance rea-
sons. This puts such software at significant risk: Most of the
complexity is part of some very public (often Internet-wide)
attack surface. To make the matter worse, getting memory
safety right in languages that do not enforce memory safety
is notoriously difficult. Over the last years, fuzzing has be-
come one of the primary tools for finding complex memory
safety bugs in an automated way. Of course, this includes
network service fuzzing. For example, AFLnet [47] removed
AFL’s focus on single files and enabled it to send packets to
target sockets. There have also been various efforts to remap
socket-based I/O to file-based I/O [55]. When successful, this
approach allows to use pre-existing file-based fuzzers such
as AFL++ [18] to fuzz network services.
However, effectively fuzzing network services remains

challenging: AFL and most of its derivatives assume that the
target is fast and spawns only a single process that runs until
the input is consumed. Afterwards, the target is supposed to
terminate immediately. Also, two sub-sequential executions
should be (mostly) independent of each other. Unfortunately,
none of these assumptions hold for most network services.
They are often designed with little regard for startup time,
persist across connections (often by spawning threads or
sub-processes), and maintain a significant state.
AFLnet forces a user to write clean-up scripts that need

to reset the environment to avoid contaminating results of
later tests. It also employs fixed sleep times to ensure servers

are online and in a good state. Overall, this makes it difficult
to test new software and drastically reduces the performance.
We found that it is not uncommon for AFLnet to only be
able to achieve single digit test executions per second.

To make matters worse, network APIs provided by current
operating systems (OSs) are notoriously slow. Establishing a
connection and reading data from it is far slower than read-
ing from a file. A common workaround is to avoid network
interfaces entirely: libpreeny [55] introduced a “de-sock”
hook that returns the file descriptor of stdin instead of net-
work sockets when a new connection is established (this
idea is now also part of AFL++). This massively improves
the performances, but fidelity is low: the vast majority of op-
erations possible on sockets are not supported by stdin. As
such, it will simply not work with most real-world software.
Note that libpreeny also contains a more advanced stdin-
to-socket connection that uses a real socket and a new thread
to move data from stdin to the network socket used by the
target. This makes fuzzing of more complex network targets
possible, but also losses the performance gains coming from
network emulation.

2.2 Protocol Fuzzing

Fuzzing network services is further complicated by the fact
that they are much more interactive than software that pro-
cesses static file formats. Network services also often incor-
porate features such as compression, encryption, sequence
numbers, and checksums that greatly hinder fuzzing efforts.
Historically, this problem has been addressed by blind

generator-style fuzzers: the user simply writes a program that
connects to the target and sends random, but (almost) valid
protocol runs. This makes it easy to fix the aforementioned
problems, but requires expert knowledge of the specific pro-
tocol and significant efforts.

The main success criterion of AFL was that only a super-
ficial or even no understanding of the format being fuzzed is
necessary to use the tool to find bugs. Using AFL requires
a set of start inputs (so-called seeds). While AFL is often
able to work even with empty seeds, it usually is more ef-
fective if sensible seeds are provided. This is mostly due to
the mutation-based fuzzing of AFL and its coverage feed-
back. However, to use these advantages, in addition to writ-
ing a good generator, the user would also have to write a
good mutator—an additional hurdle to jump that reduces
usage of fuzzing. Nonetheless, there quite a few fuzzers ex-
ist that allow the user to specify detailed formats used for
coverage-guided fuzzing. Usually, these fuzzers allow the
user to provide a grammar or format specification [2, 46].

Commonly, the inputs all have to be valid for parsing. As
a consequence, AFLsmart [46] (which uses Peach’s [58] pit
file format to specify inputs) has to take great care to handle
broken or otherwise unparseable inputs. Hence, AFLsmart
only parses the seed inputs as it is computationally infeasible
to parse new inputs found during fuzzing.
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d_bytes = s.data_vec("bytes", s.data_u8("u8"))

n_con = s.node_type("connection", outputs=[e_con])

n_pkt = s.node_type("pkt", borrows=[e_con], d_bytes)

Listing 1. A (hypothetical) specification for multi-connection network
emulation.

Some fuzzers avoid this problem by simply making it im-
possible to use seed inputs. For example, Nautilus [2] uses
context-free grammars, but does not allow to provide seeds.
As such, arbitrary grammars including those that are hard to
parse can be used. Similarly, Nyx and syzkaller [59] follow
the purely generative approach and allow to specify input
formats as sequences of typed function calls (or opcodes),
but forgo the option to provide seeds.
Lastly, in a far less principled, but just as effective ap-

proach, most fuzzers support registering custom mutators.
They usually parse inputs on a best effort basis (e.g., by split-
ting the input at newlines or matching parenthesis), perform
some mutations, and then recreate the input. This unloads all
the work to the user, but can be highly effective, particularly
for formats where most structural information can be easily
inferred (e.g., line based formats). AFLnet follows a similar
approach: it uses mutators based on a handful of rudimentary
packet boundary parsers for the supported formats.

Nyx’s Affine Typed Bytecode. As mentioned before, Nyx
follows the generative approach: the user specifies a set of
opcodes that can be chained by Nyx. While the authors only
used the tool to fuzz hypervisors, the opcode-based approach
can potentially be used to fuzz a wide variety of interactive
targets. All the user needs to do is to implement a set of
different opcodes (with their respective inputs and outputs).
For example, a network specification handling multiple

connections at the same time is shown in Listing 1. First, we
define a data type (d_bytes) that contains the payload of
actual packets. Then, we define a new opcode (or “node” in
Nyx’s terminology) that creates a new connection. It takes no
inputs and returns a new connection handle (e_con). Lastly,
we define an opcode that emits/sends a single packet via a
given connection. To this end, we create a node that bor-
rows a connection and contains a vector of bytes (the actual
content of a single TCP or UDP packet).
Note that the specification that we use for network tar-

gets in this paper is even simpler: we usually hook the first
connection established via a given port and address. Our
agent then delivers packets to each function call that at-
tempts to read data from this connection (e.g. recv() or
read()). Similarly, the agent signals readiness when func-
tions such as epoll() or select() try to wait for more data
on the given connection. All that remains is to fill out the
two opcode handlers with actual C code that establishes a
connection and sends the packet. The fuzzer auto-generates

a bytecode format and a custom VM that executes the byte-
code by calling the corresponding handlers, as well as custom
post-processing mutators.
The actual fuzzing mutations are implemented by the

fuzzer running on the host. Nyx-Net reuses the same set of
mutators provided by Nyx:

• Generate: generate a new input sequence from scratch.
• GenerateTail: generate a new packet sequence and
append it to the end of the current input sequence.

• Splice: merge the current input with a random input
from the input queue. The input from the input queue
is appended to the end of the input sequence.

• SpliceRandom: merge the current input with a ran-
dom input from the input queue and merge both se-
quences at a random offset in the packet sequence.

• Repeat: repeat the current input sequence n times.
• DataOnly: perform various AFL-style mutations on
one specific packet from the current input sequence.

2.3 Hypervisor-Based Snapshot Fuzzing

As explained before, many network applications maintain
state between individual test cases or have expensive startup
routines. The former reduces reproducibility, while the latter
reduces test throughput. It turns out that both problems can
be largely avoided by a clever trick: by obtaining a snapshot
of the system’s state directly before executing the test case,
we can reset the system to a deterministic state after each test.
The cost of this reset is independent of startup complexity
and only determined by the size of the changes to the state of
the system caused by executing the test. For example, while
starting Firefox requires to load hundreds of megabyte of
code into memory and to initialize all kinds of system APIs,
handling a handful of IPC packets will typically only dirty a
few hundred kilobytes of memory. AFL++ contains a Linux
kernel module that is able to reset the memory and some
limited kernel state of target ring-3 processes to increase
performance. Agamotto [56] and Nyx both implement such
a mechanism to create a snapshot of a whole VM and to reset
back to this snapshot after each test. This allows efficient and
deterministic fuzzing of a whole OS and even hypervisors. As
Nyx-Net is based on Nyx, we now give a short introduction
on how Nyx captures and reapplies VM snapshots.

Nyx Agents. Nyx runs the fuzz target inside of a VM
controlled by a modified version of QEMU, and executed
by a modified build of KVM. QEMU sets up the VM state
and emulates devices as needed, while KVM uses hardware
virtualization extensions provided by modern CPUs to run
the guest OS inside of the VM natively. This setup provides
high performance virtualization. Nyx integrates with both
QEMU and KVM to take control of the VM, and to reset the
state to a given snapshot. The fuzzer uses an agent compo-
nent within the VM to control the fuzzing cycle: the agent
indicates that the target is ready to receive an input and to
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create a snapshot. Then, the agent passes the input to the
target and lastly the agent notifies the fuzzer that the test
case was finished. To achieve this, the agent uses so-called
hypercalls. Hypercalls are like syscalls but for VMs: they
leave the VM context and pass the control to the hypervisor.
QEMU then reacts to those events and creates or restores a
snapshot.

Nyx Snapshots. To take a snapshot, a copy of the physical
memory and all device state is created. To revert back to a
snapshot, all device state is overwritten by the old state.
Similarly, the VM’s physical memory is overwritten by the
original memory. Since the physical memory is often large
(4GB and upwards), its prohibitively expensive to reset the
whole memory. To accelerate this process, both Nyx and
Agamotto use a variety of optimizations: both fuzzers track
which pages in the VM’s memory have been altered since
the start of the execution. This way they avoid overwriting
the whole memory in favor of the (few) modified pages.
Modern CPUs provide hardware acceleration features to

support efficient tracking of the set of modified pages, the
CPU tracks when a page is dirtied during execution. Once
a certain amount of pages have been dirtied (typically up
to 512 pages), the CPU exits the VM context and informs
the hypervisor of the pages that were affected. The hyper-
visor, in this case KVM, maintains a bitmap of pages that
were written to. Both Nyx and Agamotto use this bitmap
to selectively reset the VM’s memory. However, Nyx’s ex-
tension to KVM also maintains a stack of pages that need
to be reset. This allows Nyx to avoid searching the bitmap
for pages to be reset after the execution. For some reason,
KVM uses 1 byte in the bitmap for each page in the physi-
cal memory. As a consequence, for a 4GB VM, Nyx’s stack
of dirty pages saves approximately 1MB of memory band-
width per test case over KVM’s approach. Additionally, Nyx
implements a custom reset mechanism for the state of emu-
lated devices that is much faster than QEMU’s native device
serialization/deserialization routine.

3 Design

In the following, we describe the design of Nyx-Net and
the rationale behind each choice we made when designing
and building it. First, we present a brief threat model that
describes the attack scenarios and surfaces we are concerned
with. Then, we present the architecture of Nyx-Net, Figure 3
provides a high-level overview.

3.1 Threat Model

Any network interface is usually a clear security boundary.
As such, we mostly target various socket style interfaces (e.g.,
TCP, UDP, and Unix domain sockets). However, in some con-
text (such as sandboxes), this boundary sometimes also in-
cludes shared memory. We assume that the attacker has full
control over all data that is being sent to the corresponding
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Figure 3. High-level overview of Nyx-Net’s architecture. The fuzzer main-
tains two snapshots of the same VM, in which the agent component hooks
the relevant connection of the target.

interfaces. With real networks, this is obvious: an attacker is
usually able to send arbitrary data to any TCP/UDP server
or client. In the case of Unix domain sockets and shared
memory, we assume that the attacker has gained full control
of the sandboxed process and attempts to exploit the higher
privileged process controlling the sandbox. As such, the at-
tacker is also able to send arbitrary data via Unix domain
sockets or shared memory.

3.2 Towards Efficient Network Fuzzing

Our approach uses hypervisor-based snapshot fuzzing. Hence,
the target is running in a customized VM. At the same time,
the fuzzer is running outside of the VM to ensure that the
fuzzer has full control over the environment. Additionally,
this method allows to take a snapshot of the target. During
fuzzing, the snapshot is used to quickly reset the whole vir-
tual machine back to a pristine state after each individual test
case. This is already an excellent base to fuzz complex tar-
gets that communicate via network interfaces: the snapshot
ensures that all state of network connections inside the VM
is correctly reset between test cases. Even common, complex
patterns such as forking a new process for each incoming
connection, writing incoming data to a file system, or even
a database in another process, are correctly handled.
However, several distinct challenges remain: first, creat-

ing new network connections inside of the VM is still a
slow process, usually involving dozens of context switches.
This severely limits the fuzzing throughput. Second, many
network protocols tend to be fundamentally slow: many
messages need to be exchanged to reach “interesting” states.
Often, a complex handshake has to be performed before data
interacting with the actual application logic is exchanged.
Last, the message formats are often complex and a precise
understanding of each field or value involved is hard to ob-
tain. As such, the purely generative approach used in Nyx
is hard to use for network fuzzing. Writing a specification
that is precise enough to model all corner cases is cumber-
some and would often take significant manual effort. On the
other hand, it is usually easy to obtain some traces of the
communication with the target. To address these issues and
to make fuzzing networking servers efficient and effective,
we introduce the following techniques.
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Figure 4. Using incremental snapshots to run mutated tests while skipping
the common prefix consisting of packets one to three.

3.3 High Performance Networking

To ensure high performance networking and handle the
complexity of shared memory based IPC mechanisms, we
emulate significant fractions of the relevant functionality. To
this end, we implement a library that adds a variety of hooks
into existing libc networking functionality. This library is
injected into the target (e.g., via LD_PRELOAD or by compiling
it directly into the target) and intercepts all relevant calls.
During startup of the target program, the hooks track vari-
ous relevant interactions with the OS: we track which file
descriptors are part of the external attack surface and various
metadata associated with them. When the fuzzing starts, it
runs the Nyx bytecode VM to generate data reaching the
target process on each hooked function call. Functions such
as read() or recv() on target file descriptors consume data
from packets encoded in the test case. More complex APIs
such as epoll() are emulated to indicate which file descrip-
tor (fd) is ready to receive data (e.g., which fds are receiving
packets next according to the bytecode). This library also
ensures that packets are consumed correctly across multiple
processes. Synchronizing the state of the bytecode stream is
relevant if multiple processes are sharing file descriptors/-
sockets. For example, forking network servers will usually
inherit a recently opened socket from the main process. Simi-
larly, complex IPC protocols often contain the ability to share
new file descriptors across existing socket connections.
By emulating network functionality, we gain the follow-

ing advantages: first, we can precisely identify which data
is attacker-controlled and inject our own data at the right
places. Stemming from the same features, we can automati-
cally infer the right place to create the initial snapshot. Nyx-
Net automatically places the first snapshot after starting
the process and directly before the first byte of input data
is passed to the target. Second, and maybe even more im-
portantly, we can often run a whole test case without hit-
ting the slow operating system paths handling real network
data. We can faithfully emulate network behaviors such as
packets being received in discrete chunks. While TCP is a
stream based protocol, at a first glance it often looks like
TCP reads “the same packets” that were written by a single
call to send(). While fundamentally broken, a frightening
amount of servers assume that a single call to recv() will
never return data from more than one “packet” (e.g., corre-
sponding send() call in the client). The same ability is also
needed to properly emulate UDP connections, where packet
boundaries are indeed semantic information.

3.4 Fuzzing with Incremental Snapshots

After ensuring network traffic is emulated with high pre-
cision and performance, we still face the challenge that in
many cases, protocols contain long sequences of messages
(and hence complex states). For example, Firefox’s IPC traffic
consists of hundreds and thousands of packets containing
many kilobytes of relevant data. Even with fast network em-
ulations, the number of such test cases that can be executed
per second is strictly limited by the time needed to parse
and consume these longs sequences. As an example, assume
that we have a stream of 120 packets that we want to fuzz.
Further, assume that we are currently fuzzing only the last
20 packets. Each test case will execute the same initial 100
packets over and over again. To overcome this hurdle for
fuzzing performance, we add the ability to use incremen-
tal snapshots: Nyx starts each new execution from the root
snapshot that represents a clean state. Nyx-Net adds the
ability to quickly create and remove secondary snapshots
after executing fragments of the input. This can be used to
shave off common prefixes from the execution by taking an
incremental snapshot after the common prefix was executed.

For example, Nyx-Net starts from the root snapshot and
executes the first 100 packets of a 120 packet sequence. It then
take a secondary “incremental” snapshot that represents the
VM state after executing the first 100 packets. Now,Nyx-Net
runs a handful (tens to hundreds) of test cases that mutate
only the last 20 packets. After each test case, we reset the
VM state to the incremental snapshot taken after already
processing the initial 100 packets. This process is visualized
both in Figure 1 and Figure 4. This saves the time required to
handle those packets. As soon asNyx-Netwants to schedule
another input, the incremental snapshot is discarded, and
Nyx-Net returns to the root snapshot for the next input.
In some cases (especially slow targets) we have seen test

throughput increase by more than 10x. We took great care
to ensure that the process of creating this secondary snap-
shot takes very little time. While this obviously introduced
some engineering effort, it allows for great simplicity in
other aspects of our design: we only ever keep one addi-
tional snapshot around. Creating incremental snapshots is
so cheap that storing them would waste space and time. By
recreating incremental snapshots on demand, we also avoid
more complex structures such as trees of incremental snap-
shots building on top of each other [56]. Each time a new
input is scheduled for fuzzing, we randomly decide whether
to use incremental snapshots for this input (depending on
the inputs performance and number of packets). Then, we
pick a random packet in the input and create a snapshot af-
ter sending the given packet. Finally, we fuzz the remaining
packets for a number of times before discarding the snapshot.
In our experiments, we have seen that even for short state
sequences reusing the snapshot as little as 50 times yields
significant performance increases.
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Snapshot Scheduling. A snapshot placement policy de-
termines how the fuzzer selects the point at which it takes
an incremental snapshot. To place snapshots, the fuzzer in-
troduces a special “snapshot” opcode that can be injected at
arbitrary positions in the input bytecode. The VM then cre-
ates an incremental snapshot when this opcode is executed.
Nyx-Net utilizes three strategies for snapshot scheduling.

1) Nyx-Net-none As a baseline, runningNyx-Netwith-
out incremental snapshots is equivalent to a policy that
always selects the root snapshot.

Taking snapshots towards the end of the input sequence
allows the fuzzer to better exploit its incremental snapshot
capabilities; in some cases though, taking snapshots earlier
enables the fuzzer to backtrack and possibly explore branch-
ing paths in the sequence. To this end, we implemented two
snapshot placement policies to explore this trade-off. The pa-
rameters were empirically determined via small-scale studies
and for sequences smaller than four packets, both policies
select the root snapshot.

2) Nyx-Net-balanced On inputs with more than four
packets, the balanced policy chooses the root snapshot
in 4% of the cases. Otherwise it selects a random index
in the whole (50%), or only in the second half (50%).

3) Nyx-Net-aggressive This policy cycles all available
indices for snapshots. The first time an input is sched-
uled, it creates the snapshot at the end of the input.
Each time no new inputs have been found by fuzzing
this snapshot for 50 iterations, we place the snapshot
one packet earlier. When Nyx-Net-aggressive reaches
the smallest index, it starts again from the end of the
input.

3.5 Generating Complex Inputs

Asmentioned earlier,Nyx allows to express interactive proto-
cols as input languages for fuzz targets by specifying opcodes
for each possible interaction with the target. This features
makes it easy to adapt Nyx to network fuzzing. Unfortu-
nately, the tool does not support to load existing network
traces as seed files. This poses a serious restriction for net-
work fuzzing. ForNyx, the data exchanged with a hypervisor
or emulated hardware is usually structurally rather simple
(individual pointers, bitfields, etc.). However, the data passed
between clients and servers is often deeply nested and pre-
cisely modelling all aspects in Nyx’s description mechanism
is difficult. To ease the burden on the user, we introduce
a way to convert specific network connections taken from
a network dump into Nyx bytecode inputs. This converter
consists of a python library that uses a wireshark dissector
for the network dumps. Via metaprogramming, this library
creates Python functions for each opcode. Using the result-
ing python script, the user can parse PCAP files into raw
bytecode streams usable by the fuzzer. This allows allows us
to create specs that are practically identical to the algorithm

used by AFLnet. While these specs are very primitive (no
understanding of the data beyond package boundaries), it is
straight forward to create them for formats understood by
Wireshark without changes to the fuzzer (unlike in AFLnet,
where deep modifications to the fuzzing engine are needed).
While manually creating precise specs is often helpful for
fuzzing, adding the ability to also work with such primitive
specs allows Nyx-Net to be used in more use-cases and also
allows us to compare against AFLnet in an apple-to-apple
scenario where we are using the same amount of information
as AFLnet.

4 Implementation Details

To evaluate the performance of incremental snapshots and se-
lective emulation, we implemented a prototype of Nyx-Net.
In the following section, we describe the implementation
details of our fuzzer. We begin by describing the intricacies
of emulating the network APIs used by real-world software,
then we present the challenges and solutions of taking in-
cremental snapshots, and lastly, we discuss turning Nyx’s
format specifications into a format that can be used to load
complex existing network dumps as seeds.

4.1 Network Emulation

To speed up network targets for fuzzing purposes and to
inject our own fuzzing data, we emulate most network APIs.
To be able to intercept calls to network APIs, we use an
LD_PRELOAD interceptor for common libc functions. Ob-
viously, we intercept common networking APIs such as
accept(), recv(), etc. to track network sockets and the
data sent to each socket. However, we also emulate related
APIs such as the select/poll/epoll interfaces to ensure
compliant behavior. We also hook many APIs that operate
on file descriptors in general, such as dup() and close() to
keep track of aliasing file descriptors that are related to the
targeted network connection. For example, the dup family
of operations is commonly used to pass file descriptors to
child processes. Overall, our code hooks a total of 30 libc
functions and consists of roughly 2,000 lines of C code.

4.2 Creating Incremental Snapshots

Nyx only maintains a single root snapshot. Resetting the
whole VM to this snapshot is very cheap: on small targets,
Nyx is able to reset the VM about 12,000 times per second—
about as fast as forking a similarly complex process once.
While it is cheap to reset to the root snapshot, creating a root
snapshot is expensive because it requires to copy the whole
physical memory (often many gigabytes of data).

Nyx-Net extends Nyx’s capabilities by introducing a sec-
ond level snapshot that is much cheaper to create. This snap-
shot can be used to increase the performance on slow targets
by skipping a whole prefix of each test case. Nyx-Netmakes
taking an incremental snapshot about as cheap as resetting
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b = Builder(s)

con = b.connection()

b.packet(con, "HTTP/1.1 200 OK")

b.packet(con, "Content-Type: text/html")

Listing 2. A manually created seed file for the multi-connection specifica-
tion from Listing 1.

the snapshot once. As a consequence, we do not have to
maintain complex data structures to store a set of snapshots
like Agamotto. Instead, we simply recreate the snapshot
for the current test case whenever needed.
To obtain such a performance, we make use of similar

facilities as resetting the original root snapshot. More specif-
ically, we use Nyx-Net’s ability to cheaply report the set of
dirtied pages since the root snapshot was taken. The incre-
mental snapshot can use this information to obtain a copy of
all relevant memory. We also store another copy of QEMU’s
device state. To speed up resetting the VM to the incremental
snapshot, we maintain a complete second mirror image of
the VM’s physical memory (see Figure 3). However, to avoid
creating an expensive copy of all the physical memory, we
simply remap the existing root snapshot to a second location
as Copy-On-Write pages. This way, the incremental snapshot
itself looks like a complete root snapshot without incurring
anywhere near the full memory cost. As a consequence, we
do not need to check whether to reset pages from the orig-
inal root snapshot or the incremental one during the VM
reset. To create the incremental snapshot, the pages that
were dirtied by the execution since the root snapshot are
overwritten with the content of the VM’s physical memory.
The Copy-On-Write mapping ensures that the original root
snapshot remains unchanged.

Before creating another incremental snapshot, these pages
are overwritten with the content of the root snapshot. Note
that this means we accumulate real copies of pages already
present in the root snapshot. In most cases, the executions
affect the same memory. In these cases, reusing the exist-
ing copies avoids more expensive changes to the page ta-
bles. However, in the worst case, this could lead to storing
two identical copies of the root snapshot, causing twice the
memory usage. To avoid this, we mirror back the physical
memory used in the incremental snapshot to a clean copy of
the original root memory every 2,000 snapshots created.
To handle write accesses to emulated disks, Nyx-Net in-

troduces a second caching layer to store dirtied sectors repre-
senting incremental snapshots. Like Nyx, we use a hashmap
lookup to find sectors in the snapshot, otherwise we fall back
to Nyx’s root snapshot.

4.3 Using Incremental Snapshots

One of the core features of Nyx is to allow giving specifi-
cations for interactive targets. Each possible interaction is
implemented as a small opcode that takes a set of arguments.

When the fuzzer emits the opcode, the “agent” component
performs whatever actions are requested. The opcode can
also produce another set of values that may be used as ar-
guments for future opcodes. Even though we are not using
most of the features available in Nyx (e.g., affine types or
even arguments/return values), this model is fundamentally
a good fit for network fuzzing: the fuzzer is aware of the
time dimension of each interaction. That is, the fuzzer knows
about individual packets being sent and most importantly
knows that packets that were not sent yet have also not
affected the program state at all. This is crucial for incre-
mental snapshots: we introduce a special “snapshot” opcode
that the fuzzer injects at arbitrary positions in the input
stream. When the agent encounters this packet, it requests a
snapshot to be taken by a specific hypercall. Afterwards, the
fuzzer continues fuzzing starting from the next packet only.

4.4 Creating Seed Files

Since most hypercalls or MMIO accesses in emulated devices
follow reasonably simple patterns,Nyx only supported speci-
fying the interaction fully. No support for loading seed inputs
exists in Nyx and the fuzzer needs to find all sequences of
interactions on its own. This is not viable for network based
fuzzing: protocols tend to be much more complex and it be-
comes prohibitively expensive to model them down to the
last byte in Nyx’s specification format. On the other hand,
dumping network traffic is easy. As such, loading seed in-
puts adds tremendous value to fuzzing campaigns. To enable
using PCAPs as seed inputs, we extended Nyx’s specification
engine with a Python library that allows to create inputs
directly from Python code. The library consumes a specifica-
tion and dynamically creates all function for each node. Each
function logs the arguments and returns tracking objects that
know which function call returned them. Later, calls that use
those tracking objects as input can track where the values
they use, were created. This way, the script builds a graph of
function calls as well as their arguments and return values.
Finally, when calling build(), the graph is serialized into
the flat bytecode that Nyx uses. An example seed file for the
specification shown in Listing 1 can be seen in Listing 2.

We use this library in combination with pyshark to turn
PCAP network dumps into seed files. To fragment TCP
streams into logical packets, we use the same logic that
AFLnet uses. While this is some protocol-specific code, the
dissectors are usually very simple. For example, one of the
more common packet boundary dissector uses the CRLF new-
line sequence to split the data stream into logical packets.

4.5 Compile-Time Coverage

Nyx supports only Intel PT to obtain coverage feedback. Yet,
if available, compile-time instrumentation as introduced by
AFL can be faster and more robust. To ease the use of Nyx-
Net on platforms that do not support Intel PT and to improve
performance on open-source targets, we enable compatibility
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with AFL’s compile time instrumentations. The shared mem-
ory that contains the coverage bitmap is optionally exposed
to the agent. The agent can then redirect AFL’s coverage
data to the shared memory that is used by QEMU.

5 Evaluation

To evaluate the consequences of our design choices, we com-
pare the prototype implementation of Nyx-Net both against
baseline performance and other state-of-the-art network
fuzzing tools. As we will see,Nyx-Net outperforms the state-
of-the-art in network service fuzzing on almost all targets.
On the ProFuzzBench benchmark for network fuzzing,Nyx-
Net uncovers more coverage (usually between 10% and 70%).
Additionally, it usually reaches the same coverage between
10x to 100x, sometimes even 1000x faster. In fact, on around
half of the targets, Nyx-Net finds more coverage in the first
five minutes than AFLnet in 24 hours. Additionally, Nyx-
Net managed to find bugs in two targets of ProFuzzBench
that no other fuzzers is able to uncover. Lastly, we see that
even for simple (in the case of AFL++ with libpreeny) to
moderately complex (in the case of AFLnet) targets, the ap-
proaches used by existing methods begin to fail in practice.
In contrast, Nyx-Net is not only able to handle all targets
in the ProFuzzBench suite, it even works for significantly
more complex targets such as Firefox’s IPC.

5.1 Evaluation Setup

All experiments were performed on Intel Xeon Gold 6230
CPUs. Each machine had 52 physical cores and 192GB of
memory aswell as an SSD.When running experiments in par-
allel, each one was pinned to it’s own physical core. We also
disabled hyper-threading do reduce variance in performance.
In experiments on ProFuzzBench, we used Nyx-Net’s abil-
ity to use AFL’s compile-time instrumentation. This way, we
can use the same target binary across all fuzzers. Coverage
experiments where repeated ten times and checked for sta-
tistical significance as recommended by Klees et al. [33]. We
compared against AFLnet and AFLnwe in the most recent
commits supported by ProFuzzBench (0f51f9e and 6ba3a25).
Likewise, we used a recent release of AFL++ (2dac4e7).

libpreeny contains two approaches used to turn network
servers into targets suitable for fuzzing with AFL++. The
simple one only replaces sockets with stdin by hooking
accept(). As this approach is unable to handle most real-
world targets, libpreeny also ships a more complex de-
sockifying emulator. We found that it was able to handle
more of the ProFuzzBench targets. Hence, we chose to use
the second, better performing emulation layer (desock.c).

5.2 ProFuzzBench

In the first experiment, we compareNyx-Net againstAFLnet
and AFL++ in combination with libpreeny’s socket emu-
lation layer. Each individual fuzzing campaign was ran for

Table 1. Crashes found by each fuzzer in ProFuzzBench. We excluded
OOM crashes that were only due to the very narrow limits introduced
by the docker setup of ProFuzzBench. On dcmtk, Nyx-Net only finds
crashes reliably if Asan is enabled (✓). This is due to the fact that in contrast
to AFLnet, Nyx-Net does not build up memory corruption state until it
crashes. With Asan, the crash is found within the first 10 seconds. Without
Asan,Nyx-Net is able to find the bug in some runs, but not others depending
on the initial memory layout. On pure-ftpd, AFLnet-no-state managed to
trigger an OOM that was due to an internal limit and not the ProFuzzBench
limit (*). The targets that AFL++ +libpreeny was unable to run are marked
with n/a. We excluded targets where no fuzzer found anything of interest.

AFL-based Nyx-Net
Target AFLnet AFLnwe AFL++ none balanced aggressive
dcmtk ✓ ✓ n/a (✓) (✓) ✓

dnsmasq ✓ ✓ ✓ ✓ ✓ ✓
exim - - n/a ✓ ✓ ✓

live555 ✓ ✓ n/a ✓ ✓ ✓
proftpd - - n/a ✓ ✓ ✓

pure-ftpd * - n/a - - -
tinydtls ✓ ✓ n/a ✓ ✓ ✓

24h. We use the public ProFuzzBench test suite. It contains
a total of 13 different network services for various types of
protocols (from FTP file transfer over VoIP to media stream-
ing). Notably, ProFuzzBench is published and maintained
by the authors of AFLnet, and is used to showcaseAFLnet’s
strength in fuzzing stateful network targets. We used the
coverage measurement and reporting features that are part
of ProFuzzBench. A full set of final coverage results for all
fuzzers is presented in Table 2 and coverage over time is also
shown in Figure 5. Note that on some targets AFL++ with
libpreeny is unable to even start the service. On most other
targets, it makes some initial progress, but as coverage is
only measured in five minute intervals, most or all coverage
was found within the first five minutes and hence it seems
that no coverage is found at all. Additionally, AFLnwe signif-
icantly under-performs compared to AFLnet. We therefore
excluded both from Figure 5. This results demonstrate how
libpreeny is far less powerful than our emulation layer. Simi-
larly,AFLnet andAFLnet-no-state perform almost identical,
and we excluded AFLnet-no-state from the plots. Overall,
Nyx-Net is outperforming AFLnet on all but two targets
that show no statistically significant difference. We also in-
vestigated each tool’s ability to find crashes in the targets
contained in ProFuzzBench. AFLnet, AFLnet-no-state and
AFLnwe all find crashes in the exact same four targets. Sim-
ilarly, Nyx-Net was able to crash the same four targets. Ad-
ditionally, Nyx-Net also was able to crash two additional
targets. A full list of the crashes uncovered can be found in
Table 1.

5.3 Incremental Snapshots

The targets that are part of ProFuzzBench are configured
in a way that AFL and its derivatives such as AFLnet and
AFLnwe perform reasonably well. To this end, very short
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Figure 5. The median branch coverage across 10 experiments on all ProFuzzBench targets. Note that we use the original plotting tools provided by
ProFuzzBench. This has two consequences: (i) the first measurement was taken after 10 seconds (sometimes hiding initial progress) and (ii) the y-axis is
truncated to only show the coverage found after the seed files and hence does not start at 0.
Table 2. Median branch coverage found by various fuzzers across 10 runs of 24h each, compared to AFLnet. The column for AFLnet displays the number of
branches. All other columns show the changes compared to AFLnet. Changes that are statistically significant (𝜌 < 0.05) according to a Mann-Whitney u-test
are rendered bold.

AFL-based Nyx-Net
AFLnet AFLnet-no-state AFLnwe AFL++ Nyx-Net Nyx-Net-balanced Nyx-Net-aggressive

bftpd 473.5 +1.3% +1.6% n/a +3.1% +4.3% +2.2%
dcmtk 2953.0 +0.7% +1.3% n/a +1.7% +1.6% +1.4%

dnsmasq 1082.0 −0.9% −10.5% −37.2% +8.5% +10.9% +9.8%
exim 4620.5 +1.5% −18.0% n/a +2.9% +2.7% −0.4%

forked-daapd 2604.5 +0.1% −23.4% −46.7% +2.5% +4.5% +5.5%
kamailio 7222.5 −3.1% −29.9% n/a +45.9% +47.5% +47.2%
lightftp 352.0 +0.4% −53.4% −69.3% +6.7% +9.4% +9.8%
live555 3011.5 +1.3% +0.9% n/a +0.9% +1.6% +2.1%
openssh 3609.0 +0.3% −2.0% −49.7% +0.8% +0.2% −0.1%
openssl 9744.5 −0.2% −51.2% −18.8% +12.4% +13.0% +13.0%
proftpd 3186.5 −0.9% +0.4% n/a +70.2% +70.7% +70.4%

pure-ftpd 1201.5 +4.8% +2.2% n/a +11.1% +12.4% +11.4%
tinydtls 497.0 +3.9% −38.8% n/a +16.3% +10.6% +16.8%

seeds with only a handful (e.g., usually less than five) of pack-
ets where chosen by us. In such a scenario, high performance
emulation and snapshot fuzzing make up most of the impact.
While incremental snapshots still increase the throughput,
they can not add their full potential. To evaluate the impact
of incremental snapshot, we hence picked a more complex
target with longer runs. Specifically, we demonstrate how
incremental snapshots greatly increase the fuzzing through-
put when fuzzing the game Super Mario Bros. also used to
showcase other fuzzing tools [3].

Super Mario. We recreate the Super Mario experiment
presented in Ijon and demonstrate how Nyx-Net’s incre-
mental snapshots lead to 10x-30x increases over Ijon in time
to solve. On all levels, Ijon was the slowest fuzzer. Nyx-
Net-None added a modest 4x average speedup (standard
deviation 2.4x, min/max: 1x/9.4x). Nyx-Net-Balanced man-
aged to achieve an 5.8x average speedup (standard deviation:
3x, min/max: 1.6x/12.7x), while Nyx-Net-Aggressive found
solutions on average 11x faster (standard deviation: 6.8x,
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Table 3. Test throughput of various AFL based fuzzers and Nyx-Net configurations. Each entry shows the average executions per second ± standard

deviation across our ten 24h runs. Nyx-Net-none is Nyx-Net without incremental snapshots. “Aggressive” and “balanced” denote the two different strategies
each. It can be seen that aggressively using incremental snapshots drastically gives the highest test throughput in all cases. However, the biggest gains come
from the root snapshot avoiding initialization all together.

AFL-based Nyx-Net
Target AFLnet AFLnet-no-state AFLnwe AFL++ Nyx-Net-none Nyx-Net-balanced Nyx-Net-aggressive

bftpd 4.2 ± 1.9 3.1 ± 1.0 3.5 ± 1.8 - 670.3 ± 42.4 1027.2 ± 53.8 1250.1 ± 88.7
dcmtk 33.8 ± 2.3 34.1 ± 3.2 38.4 ± 1.0 - 1716.7 ± 127.3 1673.9 ± 246.5 1782.5 ± 96.3

dnsmasq 3.3 ± 1.6 3.6 ± 1.2 1.6 ± 2.0 4.5 ± 0.0 2732.7 ± 167.1 2583.3 ± 135.8 2749.1 ± 142.2
exim 4.8 ± 2.2 4.4 ± 2.5 17.8 ± 7.9 69.3 ± 0.2 312.9 ± 116.7 307.9 ± 92.1 299.9 ± 76.7

forked-daapd 0.4 ± 0.0 0.4 ± 0.0 0.5 ± 0.0 1.2 ± 0.0 13.0 ± 2.5 13.5 ± 1.7 13.6 ± 2.2
kamailio 4.1 ± 0.4 4.3 ± 0.2 4.9 ± 0.0 - 274.8 ± 19.4 352.1 ± 26.5 624.6 ± 56.6
lightftp 6.1 ± 1.5 5.6 ± 0.9 13.0 ± 6.6 14.4 ± 0.1 1557.1 ± 352.1 1760.3 ± 306.5 2040.9 ± 264.0
live555 7.7 ± 2.6 8.8 ± 2.0 25.9 ± 8.8 - 63.1 ± 5.8 84.2 ± 11.5 105.4 ± 7.7
openssh 23.6 ± 8.3 8.1 ± 3.7 29.3 ± 1.0 126.9 ± 3.6 136.4 ± 3.3 215.4 ± 3.3 830.2 ± 33.2
openssl 0.3 ± 0.1 0.8 ± 1.6 16.0 ± 0.3 16.8 ± 0.6 454.0 ± 15.0 467.1 ± 21.6 462.3 ± 17.0
proftpd 2.6 ± 1.2 1.7 ± 0.7 2.9 ± 1.0 - 332.7 ± 37.1 452.9 ± 73.0 518.1 ± 149.8

pure-ftpd 6.3 ± 3.5 5.8 ± 1.3 5.3 ± 2.2 - 849.8 ± 56.9 1450.8 ± 61.5 1806.1 ± 120.2
tinydtls 2.2 ± 0.5 2.2 ± 0.2 12.5 ± 0.3 - 1011.2 ± 358.0 942.3 ± 283.5 1228.0 ± 315.7

min/max: 1.8, 29.8x). In fact, when fuzzing some of the sim-
ple levels on 52 cores in parallel, Nyx-Net is able to find a
solution faster than a flawless player optimizing for speed
(commonly known as “speedrun”) is able to play the level
even once. This unlikely feature is made possible by a combi-
nation of factors: most importantly, as can be seen in Figure 1,
Nyx-Net’s incremental snapshot allowed the fuzzer to focus
only on the difficult part of the current execution by using
incremental snapshots right in front of the difficult jump,
leading to solve the level 10x – 20x faster than Ijon. Addi-
tionally, Ijon’s experiment setup is skipping rendering and
removes the framerate limit of 60 FPS. Lastly, we parallelize
fuzzing to 52 cores. All these speedups together allow us
to perform tens of thousands of test cases per second. As a
consequence, Nyx-Net is able to solve the first level in less
than the 26 seconds wall-clock time needed to speedrun the
level at normal framerates.
The original Ijon paper mentioned that Ijon was occa-

sionally able to use wall jumps to escape from pits. However,
Nyx-Net actually was able to exploit this ability to much
greater results: Nyx-Net is routinely able to solve a level
(2-1) by exploiting a wall jump glitch. Ijon was unable to
find this glitch and the authors of Ijon believed that level
2-1 might be impossible to solve. Nyx-Net seems to be able
to trigger this glitch somewhat regularly (it was found in
two out of three of our configurations).

Scalability. It is important to be able to scale to many
cores for fuzzing purposes. Naively parallelizing the fuzzer
like Agamotto or Nyx will consume prohibitive amounts of
memory (e.g., many 100s or even 1,000s of GBs). We share
the root snapshots between different instances. As a conse-
quence, in our experiments, 80 instances of Nyx-Net require
only about 2x the memory of a single instance.

Snapshot Overhead. To better understand the perfor-
mance impact of incremental snapshots, we also perform
detailed experiments evaluating the performance overhead
introduced by our approach. To this end, we used three differ-
ent policies of Nyx-Net for most experiments: None (only a
root snapshot is used), Balanced (we are rather conservative
about snapshots), and Aggressive (almost every execution
is using snapshots, and we are mostly placing the snapshot
close to the end of the input). This allows us to explore the
impact of using incremental snapshots. Our experiments
on ProFuzzBench (seen in Table 3) show that while snap-
shots are an additional cost, aggressive snapshot produces
the highest execution throughput on all targets. Even the
balanced strategy still usually increases throughput. While it
also reduces throughput in some cases, the difference is usu-
ally smaller than the variance between the different runs. As
mentioned before, ProFuzzBench mostly consists of short
sequences of inputs. As discussed earlier, when using incre-
mental snapshots on Super Mario, which has longer message
sequences, more aggressive snapshots significantly improve
the time to solve a target.

Agamotto. Lastly, we compare our implementation of
incremental snapshots against Agamotto, another recent
fuzzer that was developed to speed up syzkaller with in-
cremental snapshots. We used both Agamotto’s implemen-
tation and ours to create and restore incremental snapshots
using the base VM image from our network experiments. We
varied the number of dirtied pages and measured the time
needed both for creating as well as resetting an incremental
snapshot. Note that in contrast to the other experiments, this
experiment was performed on a Intel Core i7-6700HQ CPU
@ 2.60GHz with 32 GBs of RAM as the larger servers were
blocked by more computationally expensive experiments.
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All experiments were consecutively performed on a single
CPU core (pinned on core 0). For creating snapshots, 𝑛 pages
were dirtied, a temporary snapshot was created, and 𝑛 pages
where dirtied again. Then, the old root snapshot was restored.
This experiment was repeated 1,000 times each and the av-
erage times were measured. Note that the 500 MB VM was
unable to dirty 105 pages as not enough memory could be
allocated. The results are show in Figure 6. A few notable re-
sults can be observed: first of all, Nyx-Net is almost an order
of magnitude faster than Agamotto in the relevant range of
dirtied pages. As expected, usually creating/restoring snap-
shots on smaller VMs is slightly faster. Surprisingly, for both
Agamotto and Nyx-Net, restoring large numbers of dirty
pages on the 512MB VM is slower than on the 4GB VM. This
is due to the fact that allocating a significant fraction of the
whole available memory is much more work than allocat-
ing the same number of pages if there is plenty of memory.
Also, for large numbers of dirty pages, Agamotto becomes
marginally faster than Nyx-Net. This is due to the fact that
when the number of dirty pages approaches the number
of pages available, the size of our dirty stack approaches
(and eventually even exceeds) the size of the bitmap used.
It should be noted that in contrast to Nyx-Net, Agamotto
maintains a tree of snapshots. After one gigabyte is used
to store snapshots, Agamotto begins to discard old snap-
shots causing it to slow down. This state is usually quickly
reached during fuzzing (as well as in this experiment). We
also performed offline experiments where we aborted be-
fore Agamotto would start using its LRU policy to evict
snapshots. This increases Agamotto’s performance, as no
cleanups are performed. However, the performance was still
behind Nyx-Net’s throughput for typical workloads.

Overall,Nyx-Net is significantly faster across the relevant
part of the spectrum of snapshot sizes. This observation is
related to multiple factors. First, Nyx-Net uses a simpler
mechanism: while Agamotto constructs trees of prefixed
snapshots, Nyx-Net only uses a single snapshot. Second,
Nyx-Net is not iterating the whole bitmap that tracks dirty
pages, while Agamotto has to walk the whole bitmap of
all pages present in the physical memory of the VM. Last,
Nyx-Net also uses faster emulated device resets, reducing
the fixed cost of resetting devices.

5.4 Case Study: MySQL Client

After we evaluated Nyx-Net on various server components,
we now present a high-level view of using Nyx-Net for
testing clients. For this case study, we fuzzed MySQL’s client
software that is used to connect to and administrate MySQL
databases. Running Nyx-Net requires five steps: (i) obtain
the target binary, (ii) pick or create a protocol specification,
(iii) obtain seed inputs (optionally), (iv) bundles all required
data, and (v) finally run the fuzzer.
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Figure 6. Measuring the throughput of creating/loading incremental snap-
shots with𝑛 dirty pages on VMs with 512MB and 4GB memory respectively.

1. In a first step, we obtain a binary of MySQL client to
fuzz by compiling the software with AFL’s compiler.

2. Next, we need to chose or create a format specifica-
tion. As we do not want to spend the time to learn
about this protocol, we simply pick the generic default
specification that assumes raw packets.

3. To gather seed inputs in step three, we use Wireshark
to obtain a set of PCAPs. As the capture was taken lo-
cally, TCP packets directly correspond to logical pack-
ets in the protocol. Hence, we use the generic script to
split the PCAP into individual packets used as seed.

4. The fourth step is to bundle a share folder that contains
all relevant data. We use the packer script that copies
the target, all of its dependencies, and the seeds into
the share folder. It also parses the specification and
auto-generates the LD_PRELOAD library that is used
as agent component during fuzzing.

5. In the last step, we run the fuzzer by passing the path
to the share folder. The fuzzer automatically loads the
VM image, which runs a script that downloads the
share directory and runs the target.

Performing these steps yields an out-of-bound read on the
current version of the client (as shipped by Ubuntu) after a
few minutes of fuzzing on 52 cores.

5.5 Case Study: Lighttpd

We also used Nyx-Net on Lighttpd’s development branch
and found a memory corruption issue where a negative
amount of memory could be allocated under specific cir-
cumstances. We reported the issue and the bug was fixed
before being merged into master.

5.6 Case Study: Firefox

To demonstrate the versatility of Nyx-Net, we also fuzzed
the IPC interface used by Firefox to separate high-risk, sand-
boxed content processes from the main process that contains
all critical data. The fuzzing team at Firefox recently specifi-
cally asked for this kind of fuzzing in a public blog post [32].
Luckily, Nyx-Netmatches their needs very closely. It should
be noted that the IPC interface is much more complex than
the usual network services. It combines many different kinds
of communication patters, from sockets, over sharedmemory
to custom actor implementations used by JavaScript code to
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communicate between processes. Nonetheless, Nyx-Net is
able to fuzz Firefox IPC with only some changes to the agent
component (the LD_PRELOAD library). Specifically, Firefox
uses dozens of processes and threads and approximately a
hundred sockets—many of which are needed at the same
time. We extended the agent to find the relevant sockets
and to allow the agent to talk to multiple connections at
the same time. While fuzzing Firefox, we found three bugs
and the Firefox team found two additional security issues
while evaluating and integrating Nyx-Net into their work-
flow. It should also be noted that we only fuzzed a very small
subset of the available packets due to our limited understand-
ing of Firefox’s IPC mechanisms. After seeing the impact of
Nyx-Net, the fuzzing team at Mozilla is currently planning
to integrate Nyx-Net into their testing pipeline. We were
awarded a $20.000 bug bounty for enabling fuzzing of the
IPC interface of Firefox, mainly because our approach solves
a long-standing problem at Mozilla.

5.7 Handling of New Vulnerabilities

We worked closely with a security engineer at Mozilla to un-
derstand and mitigate the security impact of the bugs found
with Nyx-Net. While our three bugs where only null pointer
dereferences (which are still regarded as high severity), the
additional two bugs found by Mozilla were exploitable. Dur-
ing the evaluation, we also found one crash in MySQL’s
client that affects the version of MySQL currently shipped
in Ubuntu. Lastly, when fuzzing Lighttpd, we also uncov-
ered an integer underflow in malloc that was fixed before it
was shipped. Additionally, Nyx-Net managed to find two
new bugs in targets from the ProFuzzBench suite. While
no other fuzzer in our evaluation found these bugs, it seems
like these bugs have been fixed in the latest release.

6 Related Work

Following the publication of AFL [70], its impact soon caused
a wave of additional research. Almost every design choice
was investigated: AFL’s input mutation algorithm where ex-
tended upon [2, 4, 17, 24, 43, 46] as was its ability to trigger
and identify bugs [6, 6, 30, 41, 42, 62, 68]. To improve the
strength of AFL’s semi-randommutations, many researchers
proposed to combine fuzzing with more elaborate program
analysis techniques such as taint tracking [12, 49] and sym-
bolic or concolic execution [20–23, 28, 38, 45, 57, 60, 69, 72].
Similarly, as the fast coverage guidance is one of the defin-
ing features of AFL, it was heavily scrutinized. Additional
feedback mechanism where invented and tested for improve-
ments [14, 19, 27, 35, 39, 61]. The last big component of AFL,
after mutating and obtaining coverage feedback, is picking
which input is fuzzed next. Like the other two components,
input scheduling has been investigated thoroughly [3, 8–
11, 50, 63]. For a more in-depth overview of recent develop-
ments in fuzzing, please refer to Manès et al.’s SoK paper [37].

To make feedback fuzzing more applicable in various scenar-
ios, the harnessing was improved. Fuzzers such as syzkaller
or kAFL [26, 44, 54, 56, 59, 64] adapted AFL’s fuzzing model
to kernel fuzzing. Fuzzers like VDF and Nyx even target
hypervisors [25, 52, 53]. Hypervisor-based fuzzing is also
commonly used to fuzz firmware [13, 36, 51, 73] Snapshots
were also used previously to speed up fuzzing. Besides Nyx,
Falk proposed to use hypervisor-based snapshot fuzzing [16].
Similarly, snapshots were used to improve fuzzing of An-
droid apps [15]. Agamotto even uses incremental snapshots
to accelerate kernel-level fuzzing. Xu et al. proposed the
use of specifically optimized fuzzing primitives to accelerate
fuzzers, such as a replacement of the fork() syscall with
a custom snapshot syscall [65]. CRIU provides in-userland
checkpointing [1] which is widely used by OS-level virtual-
ization such as vOpenVZ and docker and could potentially be
used to improve fuzzing performance by utilizing its check-
point capabilities to replace fork(). Additionally, snapshots
were also used to systematically explore and uncover incon-
sistencies in distributed systems such as complex storage
systems and distributed databases [66, 67].

7 Conclusion

In this paper, we present Nyx-Net, an approach to fuzz com-
plex network services with high performance and fidelity.We
believe that snapshot-based network fuzzing makes fuzzing
significantly easier to use: the user does not need to ensure
that there are no artifacts due to residual states from previous
executions. At the same time, our approach can also clearly
outperform state-of-the-art approaches based on sending
data via real network interfaces—often by orders of magni-
tude. We also found Nyx-Net very easy to use: using Nyx’s
support for binary-only fuzzing, we can directly take targets
from the Ubuntu repositories and fuzz test them. Nonethe-
less, our network emulation is still not 100% accurate in
more complex scenarios (e.g., when multiple connection are
needed at the same time). As such, we still needed to perform
some changes to the agent when fuzzing Firefox’s IPC. A
more complete emulation would make Nyx-Net even easier
to use, we leave this engineering challenge as future work.
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