
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

kAFL: Hardware-Assisted Feedback Fuzzing
for OS Kernels

Sergej Schumilo, Cornelius Aschermann, and Robert Gawlik, Ruhr-Universität Bochum;
Sebastian Schinzel, Münster University of Applied Sciences;

Thorsten Holz, Ruhr-Universität Bochum

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Sergej Schumilo
Ruhr-Universität Bochum

Cornelius Aschermann
Ruhr-Universität Bochum

Robert Gawlik
Ruhr-Universität Bochum

Sebastian Schinzel
Münster University of Applied Sciences

Thorsten Holz
Ruhr-Universität Bochum

Abstract
Many kinds of memory safety vulnerabilities have

been endangering software systems for decades.
Amongst other approaches, fuzzing is a promising
technique to unveil various software faults. Recently,
feedback-guided fuzzing demonstrated its power, pro-
ducing a steady stream of security-critical software bugs.
Most fuzzing efforts—especially feedback fuzzing—are
limited to user space components of an operating system
(OS), although bugs in kernel components are more
severe, because they allow an attacker to gain access
to a system with full privileges. Unfortunately, kernel
components are difficult to fuzz as feedback mechanisms
(i.e., guided code coverage) cannot be easily applied.
Additionally, non-determinism due to interrupts, kernel
threads, statefulness, and similar mechanisms poses
problems. Furthermore, if a process fuzzes its own
kernel, a kernel crash highly impacts the performance of
the fuzzer as the OS needs to reboot.

In this paper, we approach the problem of coverage-
guided kernel fuzzing in an OS-independent and
hardware-assisted way: We utilize a hypervisor and In-
tel’s Processor Trace (PT) technology. This allows us
to remain independent of the target OS as we just re-
quire a small user space component that interacts with
the targeted OS. As a result, our approach introduces
almost no performance overhead, even in cases where
the OS crashes, and performs up to 17,000 executions
per second on an off-the-shelf laptop. We developed a
framework called kernel-AFL (kAFL) to assess the secu-
rity of Linux, macOS, and Windows kernel components.
Among many crashes, we uncovered several flaws in the
ext4 driver for Linux, the HFS and APFS file system of
macOS, and the NTFS driver of Windows.

1 Introduction

Several vulnerability classes such as memory corrup-
tions, race-conditional memory accesses, and use-after-

free vulnerabilities, are known threats for programs run-
ning in user mode as well as for the operating system
(OS) core itself. Past experience has shown that attack-
ers typically focus on user mode applications. This is
likely because vulnerabilities in user mode programs are
notoriously easier and more reliable to exploit. How-
ever, with the appearance of different kinds of exploit
defense mechanisms – especially in user mode, it has
become much harder nowadays to exploit known vul-
nerabilities. Due to those advanced defense mechanisms
in user mode, the kernel has become even more appeal-
ing to an attacker since most kernel defense mechanisms
are not widely deployed in practice. This is due to more
complex implementations, which may affect the system
performance. Furthermore, some of them are not part
of the official mainline code base or even require sup-
port for the latest CPU extension (e.g., SMAP / SMEP
on x86-64). Additionally, when compromising the OS,
an attacker typically gains full access to the system re-
sources (except for virtualized systems). Kernel-level
vulnerabilities are usually used for privilege escalation
or to gain persistence for kernel-based rootkits.

For a long time, fuzzing has been a critical compo-
nent in testing and establishing the quality of software.
However, with the development of American Fuzzy Lop
(AFL), smarter fuzzers have gained significant traction
in the industry [1] as well as in research [8, 14, 35, 37].
This trend was further amplified by Google’s OSS Fuzz
project that successfully found—and continues to find—
a significant number of critical bugs in highly security-
relevant software. Finally, DARPA’s Cyber Grand Chal-
lenge showed that fuzzing remains highly relevant for
the state-of-the-art in bug finding. The latest generation
of feedback-driven fuzzers generally uses mechanisms
to learn which inputs are interesting and which are not.
Interesting inputs are used to produce more inputs that
may trigger new execution paths in the target. Inputs that
did not trigger interesting behavior in the program are
discarded. Thus, the fuzzer is able to “learn” the input

USENIX Association 26th USENIX Security Symposium 167

format. This greatly improves efficiency and usability
of fuzzers, especially by reducing the need for an oracle
which generates semi-valid inputs or an extensive corpus
that covers most paths in the target.

Unfortunately, AFL is limited to user space applica-
tions and lacks kernel support. Fuzzing kernels has a
set of additional challenges when compared to userland
(or ring 3) fuzzing: First, crashes and timeouts mandate
the use of virtualization to be able to catch faults and
continue gracefully. Second, kernel-level code has sig-
nificantly more non-determinism than the average ring 3
program—mostly due to interrupts, kernel threads, state-
fulness, and similar mechanisms. This makes fuzzing
kernel code challenging. Furthermore, there is no equiv-
alent to command line arguments or stdin to interact
with kernels or drivers in a generic way except for plain
interrupt or sysenter instructions. In addition, the Win-
dows kernel and many relevant drivers and core compo-
nents (for Windows, macOS and even Linux) are closed
source and cannot be instrumented by common tech-
niques without a significant performance overhead.

Previous approaches to kernel fuzzing were not
portable because they relied on certain drivers or recom-
pilation [10, 34], were very slow due to emulation to
gather feedback [7], or simply were not feedback-driven
at all [11].

In this paper, we introduce a new technique that al-
lows applying feedback fuzzing to arbitrary (even closed
source) x86-64 based kernels, without any custom ring
0 target code or even OS-specific code at all. We
discuss the design and implementation of kernel-AFL
(kAFL), our prototype implementation of the proposed
techniques. The overhead for feedback generation is very
small (less than 5%) due to a new CPU feature: Intel’s
Processor Trace (PT) technology provides control flow
information on running code. We use this information
to construct a feedback mechanism similar to AFL’s in-
strumentation. This allows us to obtain up to 17,000 ex-
ecutions per second on an off-the-shelf laptop (Thinkpad
T460p, i7-6700HQ and 32 GB RAM) for simple target
drivers. Additionally, we describe an efficient way for
dealing with the non-determinisms that occur during ker-
nel fuzzing. Due to the modular design, kAFL is exten-
sible to fuzz any x86/x86-64 OS. We have applied kAFL
to Linux, macOS, and Windows and found multiple pre-
viously unknown bugs in kernel drivers in those OSs.

In summary, our contributions in this paper are:

• OS independence: We show that feedback-driven
fuzzing of closed-source kernel mode components
is possible in an (almost) OS-independent manner
by harnessing the hypervisor (VMM) to produce
coverage. This allows targeting any x86 operating
system kernel or user space component of interest.

• Hardware-assisted feedback: Our fuzzing ap-
proach utilizes Intel’s Processor Trace (PT) tech-
nology, and thus has a very small performance over-
head. Additionally, our PT-decoder is up to 30 times
faster than Intel’s ptxed decoder. Thereby, we ob-
tain complete trace information that we use to guide
our evolutionary fuzzing algorithm to maximize test
coverage.

• Extensible and modular design: Our modular de-
sign separates the fuzzer, the tracing engine, and
the target to fuzz. This allows to support additional
x86 operating systems’ kernel space and user space
components, without the need to develop a system
driver for the target OS.

• kernel-AFL: We incorporated our design con-
cepts and developed a prototype called kernel-AFL
(kAFL) which was able to find several vulnerabili-
ties in kernel components of different operating sys-
tems. To foster research on this topic, we make the
source code of our prototype implementation avail-
able at https://github.com/RUB-SysSec/kAFL.

2 Technical Background

We use the Intel Processor Trace (Intel PT) extension of
IA-32 CPUs to obtain coverage information for ring 0
execution of arbitrary (even closed-source) OS code. To
facilitate efficient and OS-independent fuzzing, we also
make use of Intel’s hardware virtualization features (In-
tel VT-x). Hence, our approach requires a CPU that sup-
ports both Intel VT-x and Intel PT. This section provides a
brief overview of these hardware features and establishes
the technical foundation for the later sections.

2.1 x86-64 Virtual Memory Layouts
Every commonly used x86-64 OS uses a split virtual
memory layout: The kernel is commonly located at the
upper half of each virtual memory space, whereas each
user mode process memory is located in the lower half.
For example, the virtual memory space of Linux is typ-
ically split into kernel space (upper half) and user space
(lower half) each with a size of 247 due to the 48-bit
virtual address limit of current x86-64 CPUs. Hence,
the kernel memory is mapped to any virtual address
space and therefore it is located always at the same
virtual address. If an user mode process executes the
syscall/sysenter instruction for kernel interaction or
causes an exception that has to be handled by the OS, the
OS will keep the current CR3 value and thus does not
switch the virtual memory address space. Instead, the
current virtual memory address space is reused and the
kernel handles the current user mode process related task
within the same address space.

168 26th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/kAFL

2.2 Intel VT-x

The kernel fuzzing approach introduced in this paper re-
lies on modern x86-64 hardware virtualization technol-
ogy. Hence, we provide a brief overview of Intel’s hard-
ware virtualization technology, Intel VT-x.

We differentiate between three kinds of CPUs: phys-
ical CPUs, logical CPUs, and virtual CPUs (vCPUs). A
physical CPU is a CPU that is implemented in hardware.
Most modern CPUs support mechanisms to increase
multithreading performance without additional physical
CPU cores on the die (e.g., Intel Hyper-Threading). In
this case, there are multiple logical CPUs on one phys-
ical CPU. These different logical CPUs share the phys-
ical CPU and, thus, only one of them can be active at
a time. However, the execution of the different logical
CPUs is interleaved by the hardware and therefore the
available resources can be utilized more efficiently (e.g.,
one logical CPU uses the arithmetic logic unit while an-
other logical CPU waits for a data fetch) and the oper-
ating system can reduce the scheduling overhead. Each
logical CPU is usually treated like a whole CPU by the
operating system. Finally, it is possible to create multiple
hardware-supported virtual machines (VMs) on a single
logical CPU. In this case, each VM has a set of its own
vCPUs.

The virtualization role model is divided into two com-
ponents: the virtual machine monitor (VMM) and the
VM. The VMM, also named hypervisor or host, is priv-
ileged software that has full control over the physical
CPU and provides virtualized guests with restricted ac-
cess to physical resources. The VM, also termed guest, is
a piece of software that is transparently executed within
the virtualized context provided by the VMM.

To provide full hardware-assisted virtualization sup-
port, Intel VT-x adds two additional execution modes
to the well-known protection ring based standard mode
of execution. The default mode of executions is called
VMX OFF. It does not implement any hardware virtual-
ization support. When using hardware-supported virtual-
ization, the CPU switches into the VMX ON state and dis-
tinguishes between two different execution modes: the
higher-privileged mode of the hypervisor (VMX root or
VMM), and the lower privileged execution mode of the
virtual machine guest (VMX non-root or VM).

When running in guest mode, several privileged ac-
tions or reasons (execution of restricted instructions, ex-
pired VMX-preemption timer, or access to certain em-
ulated devices) in the VM guest will trigger a VM-Exit
event and transfer control to the hypervisor. This way,
it is possible to run arbitrary software that expects priv-
ileged access to the hardware (such as an OS) inside a
VM. At the same time, a higher authority can meditate

and control the operations performed with a small per-
formance overhead.

To create, launch, and control a VM, the VMM has to
use a virtual machine control structure (VMCS) for each
vCPU [28]. The VMCS contains all essential informa-
tion about the current state and how to perform VMX
transitions of the vCPU.

2.3 Intel Processor Trace
With the fifth generation of Intel Core processors (Broad-
well architecture), Intel has introduced a new processor
feature called Intel Processor Trace (Intel PT) to provide
execution and branch tracing information. Unlike other
branch tracing technologies such as Intel Last Branch
Record (LBR), the size of the output buffer is no longer
strictly limited by special registers. Instead, it is only
limited by the size of the main memory. If the output
target is repeatedly and timely emptied, we can create
traces of arbitrary length. The processor’s output format
is packet-oriented and separated into two different types:
general execution information and control flow informa-
tion packets. Intel PT produces various types of con-
trol flow related packet types during runtime. To obtain
control-flow information from the trace data, we require
a decoder. The decoder needs the traced software to in-
terpret the packets that contain the addresses of condi-
tional branches.

Intel specifies five types of control flow affecting in-
structions called Change of Flow Instruction (CoFI). The
execution of different CoFI types results in different se-
quences of flow information packets. The three CoFI
types relevant to our work are:

1. Taken-Not-Taken (TNT): If the processor exe-
cutes any conditional jump, the decision whether
this jump was taken or not is encoded in a TNT
packet.

2. Target IP (TIP): If the processor executes an indi-
rect jump or transfer instruction, the decoder will
not be able to recover the control flow. There-
fore, the processor produces a TIP packet upon the
execution of an instruction of the type indirect
branch, near ret or far transfer. These TIP
packets store the corresponding target instruction
pointer executed by the processor after the transfer
or jump has occurred.

3. Flow Update Packets (FUP): Another case where
the processor must produce a hint packet for the
software decoder are asynchronous events such as
interrupts or traps. These events are recorded as
FUPs and usually followed by a TIP to indicate the
following instruction.

USENIX Association 26th USENIX Security Symposium 169

To limit the amount of trace data generated, Intel PT
provides multiple options for runtime filtering. Depend-
ing on the given processor, it might be possible to con-
figure multiple ranges for instruction-pointer filtering (IP
Filter). In general, these filter ranges only affect virtual
addresses if paging is enabled; this is always the case
in x86-64 long-mode. Therefore, it is possible to limit
trace generation to selected ranges and thus avoid huge
amounts of superfluous trace data. In accordance to the
IP filtering mechanism, it is possible to filter traces by
the current privilege level (CPL) of the protection ring
model (e.g ring 0 or ring 3). This filter allows us to select
only the user mode (CPL > 0) or kernel mode (CPL = 0)
activity. kAFL utilizes this filter option to limit tracing
explicitly to kernel mode execution. In most cases, the
focus of tracing is not the whole OS within all user mode
processes and their kernel interactions. To limit trace
data generation to one specific virtual memory address
space, software can use the CR3 Filter. Intel PT will only
produce trace data if the CR3 value matches the config-
ured filter value. The CR3 register contains the pointer to
the current page table. The value of the CR3 register can
thus be used to filter code executed on behalf of a certain
ring 3 process, even in ring 0 mode.

Intel PT supports various configurable target domains
for output data. kAFL focuses on the Table of Physical
Addresses (ToPA) mechanism that enables us to specify
multiple output regions: Every ToPA table contains mul-
tiple ToPA entries, which in turn contain the physical ad-
dress of the associated memory chunk used to store trace
data. Each ToPA entry contains the physical address, a
size specifier for the referred memory chunk in physical
memory, and multiple type bits. These type bits specify
the CPU’s behavior on access of the ToPA entry and how
to deal with filled output regions.

3 System Overview

We now provide a high-level overview of the design of an
OS-independent and hardware-assisted feedback fuzzer
before presenting the implementation details of our tool
called kAFL in Section 4.

Our system is split into three components: the
fuzzing logic, the VM infrastructure (modified versions
of QEMU and KVM denoted by QEMU-PT and KVM-
PT), and the user mode agent. The fuzzing logic runs
as a ring 3 process on the host OS. This logic is also re-
ferred to as kAFL. The VM infrastructure consists of a
ring 3 component (QEMU-PT) and a ring 0 component
(KVM-PT). This facilitates communication between the
other two components and makes the Intel PT trace data
available to the fuzzing logic. In general, the guest only
communicates with the host via hypercalls. The host can
then read and write guest memory and continues VM ex-

Figure 1: High-level overview of the kAFL architecture.
The setup process (1©- 3©) is not shown.

ecution once the request has been handled. A overview
of the architecture can be seen in Figure 1.

We now outline the events and communication that
take place during a fuzz run, as depicted in Figure 2.
When the VM is started, the first part of the user mode
agent (the loader) uses the hypercall HC_SUBMIT_PANIC
to submit the address of the kernel panic handler (or the
BugCheck kernel address in Windows) to QEMU-PT 1©.
QEMU-PT then patches a hypercall calling routine at the
address of the panic handler. This allows us to get noti-
fied and react fast to crashes in the VM (instead of wait-
ing for timeouts / reboots).

Then the loader uses the hypercall HC_GET_PROGRAM to
request the actual user mode agent and starts it 2©. Now
the loader setup is complete and the fuzzer begins its ini-
tialization. The agent triggers a HC_SUBMIT_CR3 hyper-
call that will be handled by KVM-PT. The hypervisor
extracts the CR3 value of the currently running process
and hands it over to QEMU-PT for filtering 3©. Finally,
the agent uses the hypercall HC_SUBMIT_BUFFER to in-
form the host at which address it expects its inputs. The
fuzzer setup is now finished and the main fuzzing loop
starts.

During the main loop, the agent requests a new input
using the HC_GET_INPUT hypercall 4©. The fuzzing logic
produces a new input and sends it to QEMU-PT. Since
QEMU-PT has full access to the guest’s memory space,
it can simply copy the input into the buffer specified by
the agent. Then it performs a VM-Entry to continue ex-
ecuting the VM 5©. At the same time, this VM-Entry
event enables the PT tracing mechanism. The agent now
consumes the input and interacts with the kernel (e.g.,
it interprets the input as a file system image and tries to
mount it 6©). While the kernel is being fuzzed, QEMU-
PT decodes the trace data and updates the bitmap on de-
mand. Once the interaction is finished and the kernel
handed control back to the agent, the agent notifies the
hypervisor via a HC_FINISHED hypercall. The resulting
VM-Exit stops the tracing and QEMU-PT decodes the
remaining trace data 7©. The resulting bitmap is passed

170 26th USENIX Security Symposium USENIX Association

Figure 2: Overview of the kAFL hypercall interaction.

to the logic for further processing 8©. Afterwards, the
agent can continue to run any untraced clean-up routines
before issuing another HC_GET_INPUT to start the next
loop iteration.

3.1 Fuzzing Logic

The fuzzing logic is the command and controlling com-
ponent of kAFL. It manages the queue of interesting
inputs, creates mutated inputs, and schedules them for
evaluation. In most aspects, it is based on the algo-
rithms used by AFL. Similarly to AFL, we use a bitmap
to store basic block transitions. We gather the AFL
bitmap from the VMs through an interface to QEMU-PT
and decide which inputs triggered interesting behaviour.
The fuzzing logic also coordinates the number of VMs
spawned in parallel. One of the bigger design differences
to AFL is that kAFL makes extensive use of multipro-
cessing and parallelism, where AFL simply spawns mul-
tiple independent fuzzers which synchronize their input
queues sporadically1. In contrast, kAFL executes the de-
terministic stage in parallel, and all threads work on the
most interesting input. A significant amount of time is
spent in tasks that are not CPU-bound (such as guests
that delay execution). Therefore, using many parallel
processes (upto 5-6 per CPU core) drastically improves
performance of the fuzzing process due to a higher CPU
load per core. Lastly, the fuzzing logic communicates
with the user interface to display current statistics in reg-
ular intervals.

1AFL recently added experimental support for distributing the
deterministic stage, see https://github.com/mirrorer/afl/blob/
master/docs/parallel_fuzzing.txt#L60-L66.

3.2 User Mode Agent
We expect a user mode agent to run inside the virtual-
ized target OS. In principle, this component only has to
synchronize and gather new inputs by the fuzzing logic
via the hypercall interface and use it to interact with the
guest’s kernel. Example agents are programs that try to
mount inputs as file system images, pass specific files
such as certificates to kernel parser or even execute a
chain of various syscalls.

In theory, we only need one such component. In prac-
tice, we use two different components: The first program
is the loader component. Its job is to accept an arbitrary
binary via the hypercall interface. This binary represents
the user mode agent and is executed by the loader com-
ponent. Additionally, the loader component will check
if the agent has crashed (which happens often in case of
syscall fuzzing) and restarts it if necessary. This setup
has the advantage that we can pass any binary to the
VM and reuse VM snapshots for different fuzzing com-
ponents.

3.3 Virtualization Infrastructure
The fuzzing logic uses QEMU-PT to interact with KVM-
PT to spawn the target VMs. KVM-PT allows us to trace
individual vCPUs instead of logical CPUs. This com-
ponent configures and enables Intel PT on the respec-
tive logical CPU before the CPU switches to guest ex-
ecution and disables tracing during the VM-Exit tran-
sition. This way, the associated CPU will only pro-
vide trace data of the virtualized kernel itself. QEMU-
PT is used to interact with the KVM-PT interface to
configure and toggle Intel PT from user space and ac-
cess the output buffer to decode the trace data. The

USENIX Association 26th USENIX Security Symposium 171

https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt##L60-L66
https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt##L60-L66

decoded trace data is directly translated into a stream
of addresses of executed conditional branch instruc-
tions. Moreover, QEMU-PT also filters the stream of
executed addresses—based on previous knowledge of
non-deterministic basic blocks—to prevent false-positive
fuzzing results, and makes those available to the fuzzing
logic as AFL-compatible bitmaps. We use our own cus-
tom Intel PT decoder to cache disassembly results, which
leads to significant performance gains compared to the
off-the-shelf solution provided by Intel.

3.4 Stateful and Non-Deterministic Code

Tracing operating systems results in a significant amount
of non-determinism. The largest source of non-
deterministic basic block transitions are interrupts, which
can occur at any point in time. Additionally, our imple-
mentation does not reset the whole state after each exe-
cution since reloading the VM from a memory snapshot
is costly. Thus we have to deal with the stateful and asyn-
chronous aspects of the kernel. An example for stateful
code might be a simple call to kmalloc(): Depending
on the number of previous allocations, kmalloc() might
simply return a fresh pointer or map a whole range of
pages and update a significant amount of metadata. We
use two techniques to deal with these challenges.

The first one is to filter out interrupts and the transi-
tion caused while handling interrupts. This is possible
using the Intel PT trace data. If an interrupt occurs, the
processor emits a TIP instruction since the transfer is not
visible in the code. To avoid confusion during an inter-
rupt occurring at an indirect control flow instruction, the
TIP packet is marked with FUP (flow update packet) to
indicate an asynchronous event. After identifying such a
signature, the decoder will drop all basic blocks visited
until the corresponding iret instruction is encountered.
To link the interrupts with their corresponding iret, we
track all interrupts on a simple call stack. This mecha-
nism is necessary since the interrupt handler may itself
be interrupted by another interrupt.

The second mechanism is to blacklist any basic block
that occurs non-deterministically. Each time we en-
counter a new bit in the AFL bitmap, we re-run the in-
put several times in a row. Every basic block that does
not show up in all of the trials will be marked as non-
deterministic and filtered from further processing. For
fast access, the results are stored in a bitmap of black-
listed basic block addresses. During the AFL bitmap
translation, any transition hash value—which combines
the current basic block address and the previous ba-
sic block address—involving a blacklisted block will be
skipped.

3.5 Hypercalls

Hypercalls are a feature introduced by virtualization. On
Intel platforms, hypercalls are triggered by the vmcall
instruction. Hypercalls are to VMMs as syscalls are to
kernels. If any ring 3 process or the kernel in the VM ex-
ecutes a vmcall instruction, a VM-Exit event is triggered
and the VMM can decide how to process the hypercall.
We patched KVM-PT to pass through our own set of hy-
percalls to the fuzzing logic if a magic value is passed
in rax and the appropriate hypercall-ID is set in rbx.
Additionally, we also patched KVM-PT to accept hyper-
calls from ring 3. Arguments for specific hypercalls are
passed through rcx. We use this mechanism to define
an interface that user mode agent can use to communi-
cate with the fuzzing logic. One example hypercall is
HC_SUBMIT_BUFFER. Its argument is a guest pointer that
is stored in rcx. Upon executing the vmcall instruction,
a VM-Exit is triggered and QEMU-PT stores the buffer
pointer that was passed. It will later copy the new input
data into this buffer (see step 5© in Figure 2). Finally, the
execution of the VM is continued.

cli
mov rax , KAFL_MAGIC_VALUE
mov rbx , HC_CRASH
mov rcx , 0x0
vmcall

Listing 1: Hypercall crash notifier.

Another use case for this interface is to notify the
fuzzing logic when a crash occurs in the target OS kernel.
In order to do so, we overwrite the kernel crash handler
of the OS with a simple hypercall routine. The injected
code is shown in Listing 1 and displays how the hyper-
call interface is used on the assembly level. The cli in-
struction disables all interrupts to avoid any kind of asyn-
chronous interference during the hypercall routine.

4 Implementation Details

Based on the design outlined in the previous section, we
built a prototype of our approach called kAFL. In the fol-
lowing, we describe several implementation details. The
source code of our reference implementation is available
at https://github.com/RUB-SysSec/kAFL.

4.1 KVM-PT

Intel PT allows us to trace branch transitions without
patching or recompiling the targeted kernel. To the best
of our knowledge, no publicly available driver is able to
trace only guest executions of a single vCPU using In-
tel PT for long periods of time. For instance, Simple-PT
[29] does not support long-term tracing by design. The

172 26th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/kAFL

perf-subsystem [5] supports tracing of VM guest oper-
ations and long-term tracing. However, it is designed to
trace logical CPUs, not vCPUs. Even if VMX execution
is traced, the data would be associated with logical CPUs
and not with vCPUs. Hence, the VMX context must be
reassembled, which is a costly task.

To address these shortcomings, we developed KVM-
PT. It allows us to trace vCPUs for an indefinite amount
of time without any scheduling side effects or any loss
of trace data due to overflowing output regions. The ex-
tension provides a fast and reliable trace mechanism for
KVM vCPUs. Moreover, this extension exposes, much
like KVM, an extensive user mode interface to access
this tracing feature from user space. QEMU-PT utilizes
this novel interface to interact with KVM-PT and to ac-
cess the resulting trace data.

4.1.1 vCPU Specific Traces

To enable Intel PT, software that runs within ring
0 (in our case KVM-PT) has to set the corre-
sponding bit of a model specific register (MSR)
(IA32_RTIT_CTL_MSR.TraceEn) [28]. After tracing is
enabled, the logical CPU will trace any executed code if
it satisfies the configured filter options. The modification
has to be done before the CPU switches from the host
context to the VM operation; otherwise the CPU will ex-
ecute guest code and is technically unable to modify any
host MSRs. The inverse procedure is required after the
CPU has left the guest context. However, enabling or dis-
abling Intel PT manually will also yield a trace contain-
ing the manual MSR modification. To prevent the collec-
tion of unwanted trace data within the VMM, we use the
MSR autoload capabilities of Intel VT-x. MSR autoload-
ing can be enabled by modifying the corresponding en-
tries in the VMCS (e.g., VM_ENTRY_CONTROL_MSR
for VM-entries). This forces the CPU to load a list of pre-
configured values for defined MSRs after either a VM-
entry or VM-exit has occurred. By enabling tracing via
MSR autoloading, we only gather Intel PT trace data for
one specific vCPU.

4.1.2 Continuous Tracing

Once we have enabled Intel PT, the CPU will write the
resulting trace data into a memory buffer until it is full.
The physical addresses of this buffer and how to han-
dle full buffers is specified by an array of data structures
called Table of Physical Addresses (ToPA) entries.

The array can contain multiple entries and has to be
terminated by a single END entry 3©. There are two
different ways the CPU can handle an overflow: It can
stop the tracing (while continuing the execution—thus

Figure 3: KVM-PT ToPA configuration.

resulting in incomplete traces) or it can raise an inter-
rupt. This interrupt causes a VM-exit since it is not mask-
able. We catch the interrupt on the host and consume the
trace data. Finally, we reset the buffers and continue with
the VM execution. Unfortunately, this interrupt might be
raised at an unspecified time after the buffer was filled2.
Our configuration of the ToPA entries can be seen in Fig-
ure 3. To avoid losing trace data, we use two different
ToPA entries. The first one is the main buffer 1©. Its
overflow behavior is to trigger the interrupt. Once the
main buffer is filled, a second entry is used until the in-
terrupt is actually delivered. The ToPA specifies another
smaller buffer 2©. Overflowing the second buffer would
lead to the stop of the tracing. To avoid the resulting
data loss, we chose the second buffer to be about four
times larger than the largest overflowing trace we have
ever seen in our tests (4 KB).

In case the second buffer also overflows, the following
trace will contain a packet indicating that some data is
missing. In that case the size of the second buffer can
simply be increased. This way, we manage to obtain pre-
cise traces for any amount of trace data.

4.2 QEMU-PT
To make use of the KVM extension KVM-PT, an user
space counterpart is required. QEMU-PT is an extension
of QEMU and provides full support for KVM-PT’s user
space interface. This interface provides mechanisms to
enable, disable, and configure Intel PT at runtime as well
as a periodic ToPA status check to avoid overruns. KVM-
PT is accessible from user mode via ioctl() commands
and an mmap() interface.

In addition to being a userland interface to KVM-PT,
QEMU-PT includes a component that decodes trace data
into a form more suitable for the fuzzing logic: We de-
code the Intel PT packets and turn them into an AFL-like
bitmap.

4.2.1 PT Decoder

Extensive kernel fuzzing may generate several hundreds
of megabytes of trace data per second. To deal with

2This is due to the current implementation of this interrupt. Intel
specifies the interrupt as not precise, which means it is likely that fur-
ther data will be written to the next buffer or tracing will be terminated
and data will be discarded.

USENIX Association 26th USENIX Security Symposium 173

Figure 4: Overview of the pipeline that converts Intel PT traces to kAFL bitmaps.

such large amounts of incoming data, the decoder must
be implemented with a focus on efficiency. Otherwise,
the decoder may become the major bottleneck during
the fuzzing process. Nevertheless, the decoder must also
be precise, as inaccuracies during the decoding process
would result in further errors. This is due to the nature of
Intel PT decoding since the decoding process is sequen-
tial and is affected by previously decoded packets.

To ease efforts to implement an Intel PT software
decoder, Intel provides its own decoding engine called
libipt [4]. libipt is a general-purpose Intel PT decod-
ing engine. However, it does not fit our purposes very
well because libipt decodes trace data in order to pro-
vide execution data and flow information. Furthermore,
libipt does not cache disassembled instructions and has
performed poorly in our use cases.

Since kAFL only relies on flow information and the
fuzzing process is repeatedly applied to the same code,
it is possible to optimize the decoding process. Our In-
tel PT software decoder acts like a just-in-time decoder,
which means that code sections are only considered if
they are executed according to the decoded trace data.
To optimize further look-ups, all disassembled code sec-
tions are cached. In addition, we simply ignore packets
that are not relevant for our use case.

Since our PT decoder is part of QEMU-PT, trace data
is directly processed if the ToPA base region is filled.
The decoding process is applied in-place since the buffer
is directly accessible from user space via mmap(). Un-
like other Intel PT drivers, we do not need to store large
amounts of trace data in memory or on storage devices
for post-mortem decoding. Eventually, the decoded trace
data is translated to the AFL bitmap format.

4.3 AFL Fuzzing Logic

We give a brief description of the fuzzing parts of AFL
because the logic we use to perform scheduling and mu-
tations closely follows that of AFL. The most important
aspect of AFL is the bitmap used to trace which basic
block transitions where encountered. Each basic block
has a randomly assigned ID, and each transition from ba-
sic block A to another basic block B is assigned an offset
into the bitmap according to the following formula:

(id(A)/2⊕ id(B)) % SIZE_OF_BITMAP

Instead of the compile-time random, kAFL uses the
addresses of the basic blocks. Each time the transition is
observed, the corresponding byte in the bitmap is incre-
mented. After finishing the fuzzing iteration, each entry
of the bitmap is rounded such that only the highest bit re-
mains set. Then the bitmap is compared with the global
static bitmap to see if any new bit was found. If a new bit
was found, it is added to the global bitmap and the input
that triggered the new bit is added to the queue. When
a new interesting input is found, a deterministic stage is
executed that tries to mutate each byte individually.

Once the deterministic stage is finished, the non-
deterministic phase is started. During this non-
deterministic phase, multiple mutations are performed at
random locations. If the deterministic phase finds new
inputs, the non-deterministic phase will be delayed un-
til all deterministic phases of all interesting inputs have
been performed. If an input triggers an entirely new tran-
sition (as opposed to a change in the number of times the
transition was taken), it will be favored and fuzzed with
a higher priority.

5 Evaluation

Based on our implementation, we now describe the
different fuzzing campaigns we performed to evaluate
kAFL. We evaluate kAFL’s fuzzing performance across
different platforms. Section 5.5 provides an overview of
all reported vulnerabilities, crashes, and bugs that were
found during the development process of kAFL. We also
evaluate kAFL’s ability to find a previously known vul-
nerability. Finally, in Section 5.6 the overall fuzzing
performance of kAFL is compared to ProjectTriforce,
the only other OS-independent feedback fuzzer avail-
able. TriforceAFL is based on the emulation backend
of QEMU instead of hardware-assisted virtualization and
Intel PT. The performance overhead of KVM-PT is dis-
cussed in Section 5.7. Additionally, a performance com-
parison of our PT decoder and an Intel implementation
of a software decoder is given in Section 5.8.

If not stated otherwise, the benchmarks were per-
formed on a desktop system with an Intel i7-6700 pro-
cessor and 32GB DDR4 RAM. To avoid distortions due

174 26th USENIX Security Symposium USENIX Association

to poor I/O performance, all benchmarks are performed
on a RAM disk. Similar to AFL, we consider a crash-
ing input to be unique if it triggered at least one basic
block transition which has not been triggered by any pre-
vious crash (i.e., the bitmap contains at least one new
bit). Note this does not imply that the underlying bugs
are truly unique.

5.1 Fuzzing Windows

We implemented a small Windows 10 specific user mode
agent that mounts any data chunk (fuzzed payload) as
NTFS-partitioned volume (289 lines of C code). We
used the Virtual Hard Disk (VHD) API and various
IOCTLS to mount and unmount volumes programmat-
ically [31, 32]. Unfortunately, mounting volumes is a
slow operation under Windows and we only managed
to achieve a throughput of 20 executions per second.
Nonetheless, kAFL managed to find a crash in the NTFS
driver. The fuzzer ran for 4 days and 14 hours and re-
ported 59 unique crashes, all of which were division by
zero crashes. After manual investigation we suspect that
there is only one unique bug. While it does not allow
code execution, it is still a denial-of-service vulnerability,
as for example, a USB stick with that malicious NTFS
volume plugged into a critical system will crash that sys-
tem with a blue screen. It seems that we only scratched
the surface and NTFS was not thoroughly fuzzed yet.
Hence, we assume that the NTFS driver under Windows
is a valuable target for coverage-based feedback fuzzing.

Furthermore, we implemented a generic system call
(syscall) fuzzing agent that simply passes a block of data
to a syscall by setting all registers and the top stack re-
gion (55 lines of C and 46 lines of assembly code). This
allows to set parameters for a syscall with a fuzzing pay-
load independent of the OS ABI. The same fuzzer can
be used to attack syscalls on different operation sys-
tems such as Linux or macOS. However, we evaluated
it against the Windows kernel given the proprietary na-
ture of this OS. We did not find any bugs in 13 hours
of fuzzing with approx 6.3M executions since many
syscalls cause the userspace agent to terminate: Due
to the coverage-guided feedback, kAFL quickly learned
how to generate payloads to execute valid syscalls, and
this led to the unexpected execution of user mode call-
backs via the kernel within the fuzzing agent. These
crashes require rather expensive restarts of the agent and
therefore we only achieved approx. 134 executions per
second, while normally kAFL achieves a throughput of
1,000 to 4,000 tests per second (see Section 5.2). Ad-
ditionally, the Windows syscall interface has already re-
ceived much attention by the security community.

Figure 5: Fuzzing the ext4 kernel module for 32 hours.

5.2 Fuzzing Linux

We implemented a similar agent for Linux, which
mounts data as ext4 volumes (66 lines of C code). We
started the fuzz campaign with a minimal 64KB ext4 im-
age as initial input. However, we configured the fuzzer
such that it only fuzzes the first two kilobytes during
the deterministic phase. In contrast to Windows, the
Linux mount process is very fast, and we reached 1,000
to 2,000 tests per second on a Thinkpad laptop with a
i7-6700HQ@2.6GHz CPU and 32GB RAM. Due to this
high performance, we obtained significantly better cov-
erage and managed to discover 160 unique crashes and
multiple (confirmed) bugs in the ext4 driver during a
twelve-day fuzzing campaign. Figure 5 shows the first
32 hours of another fuzzing run. The fuzzing process was
still finding new paths and crashes on a fairly regular ba-
sis after 32 hours. An interesting observation is that there
was no new coverage produced between hours 16 and 25,
yet the number of inputs increased due a higher number
of loop iterations. After hour 25, a truly new input was
found that unlocked significant parts of the codebase.

5.3 Fuzzing macOS

Similarly to Windows and Linux, we targeted multiple
file systems for macOS. So far, we found approximately
150 crashes in the HFS driver and manually confirmed
that at least three of them are unique bugs that lead to
a kernel panic. Those bugs can be triggered by unprivi-
leged users and, therefore, could very well be abused for
local denial-of-service attacks. One of these bugs seems
to be a use-after-free vulnerability that leads to full con-
trol of the rip register. Additionally, kAFL found 220
unique crashes in the APFS kernel extension. All 3 HFS
vulnerabilities and multiple APFS flaws have been re-
ported to Apple.

USENIX Association 26th USENIX Security Symposium 175

5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == 'K'){
11 if(json_len > 1 && input[s+1] == 'A'){
12 if(json_len > 2 && input[s+2] == 'F'){
13 if(json_len > 3 && input[s+3] == 'L'){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html

176 26th USENIX Security Symposium USENIX Association

https://access.redhat.com/security/cve/cve-2016-0758
https://access.redhat.com/security/cve/cve-2016-8650
http://seclists.org/fulldisclosure/2016/Nov/76
https://access.redhat.com/security/cve/cve-2016-8650
http://seclists.org/fulldisclosure/2016/Nov/75
http://seclists.org/bugtraq/2016/Nov/1

Execs/Sec
(1 Process)

Execs/Sec
(8 Processes)

Time to Crash
(1 Process)

Time to Crash
(8 Processes)

Paths/Min
(1 Process)

Paths/Min
(8 Processes)

TriforceAFL 150 320 -a -a 10.08 -b

Linux (initramfs) 3000 5700 7:50 6:00 15.84 15.62
Debian 8 3000 5700 4:55 6:30 16.20 16.00
Debian 8 (KASan) 4300 5700 9:20 6:00 16.22 15.90
macOS (10.12.4) 5100 8100 7:43 5:10 14.50 15.06
Windows 10 4300 8700 4:14 4:50 11.50 12.02

a Not found during 30-minute experiments.
b This value cannot be obtained since TriforceAFL does not synchronize in such short time frames.

Table 1: kAFL and TriforceAFL fuzzing performance on the JSON sample driver.

Figure 6: Coverage comparison of kAFL (initramfs) and
TriforceAFL. kAFL takes less than 3 minutes to find the
same number of paths as TriforceAFL does in 30 minutes
(each running 1 process).

and explains some of the surprising results. This is due to
the stochastic nature of fuzzing, since each fuzzer finds
vastly different paths, some of which may take signifi-
cantly longer to process, especially crashing paths and
loops. One example for high variance is the fact that on
Debian 8 (initramfs), the multiprocessing configuration
on average needed more time to find the crash than one
process.

TriforceAFL We used the JSON driver to compare
kAFL and TriforceAFL with respect to execution speed
and code coverage. However, the results where biased
heavily in two ways: TriforceAFL did not manage to find
a path that triggers the crash within 30 minutes (usually
it takes approximately 2 hours), making it very hard to
compare the code coverage of kAFL and TriforceAFL.
The number of discovered paths is not a good indica-
tor for the amount of coverage: With increasing running
time, it becomes more difficult to discover new paths.
Secondly, the number of executions per second is also bi-
ased by slower and harder to reach paths and especially
crashing inputs. The coverage reached over time can be
seen in Figure 6. It is obvious from the figure that kAFL
found a significant number of paths that are very hard to

Figure 7: Raw execution performance comparison.

reach for TriforceAFL. kAFL mostly stops finding new
paths around the 10-15 minute mark, because the target
driver simply doesn’t contain any more paths to be un-
covered. Therefore, the coverage value in Table 1 (stated
as Paths/Min) is limited to the first 10 minutes of each
30-minute run.

We also compare raw execution performance instead
of overall fuzzing performance, which is biased because
of the execution of different paths, the sampling process
for the non-determinism-filter, and various synchroniza-
tion mechanisms. Especially on smaller inputs, these
factors disproportionately affect the overall fuzzing per-
formance. To avoid this, we compared the performance
during the first havoc stage. Figure 7 shows the raw ex-
ecution performance of kAFL compared to TriforceAFL
during this havoc phase. kAFL provides up to 54 times
better performance compared to TriforceAFL’s QEMU
CPU emulation. Slightly lower performance boosts are
seen in single-process execution (48 times faster).

syzkaller We did not perform a performance compari-
son against syzkaller [10]. This has two reasons: First of
all, syzkaller is a highly specific syscall fuzzer that en-
codes a significant amount of domain knowledge and is
therefore not applicable to other domains such as filesys-
tem images. On the other hand, syzkaller would most
likely generate a significantly higher code coverage even
without any feedback since it knows how to generate

USENIX Association 26th USENIX Security Symposium 177

Figure 8: Overhead for compiling QEMU-2.6.0 in a
traced VM.

valid syscalls and hence is able to trigger valid paths
without any learning. Therefore, the coverage compar-
ison would be highly misleading unless we implement
the same syscall logic; a task that is out of the scope of
this paper. Additionally, the coverage collection via kcov
is highly specific to Linux and not applicable to closed-
source targets.

5.7 KVM-PT Overhead

Our KVM extension KVM-PT adds overhead to the raw
execution of KVM. Therefore, the performance overhead
was compared with several KVM-PT setups on an i5-
6500@3.2Ghz desktop system with 8GB DDR4 RAM.
This includes KVM-PT in combination with the PT de-
coder, KVM-PT without the PT decoder but processing
frequent ToPA state checks, and KVM-PT without any
ToPA consideration. For this benchmark, a 13MB ker-
nel code range was configured via IP filtering ranges and
traced with one of the aforementioned setups of KVM-
PT. These benchmarks consider only the kernel core, but
neither considers any kernel module. During KVM-PT
execution only supervisor mode was traced.

To generate Intel PT load, QEMU-2.6.0 was com-
piled within a traced VM using the ./configure option
--target-list=x86_64-softmmu. We restricted trac-
ing to the whole kernel address space. This benchmark
was executed on a single vCPU. The resulting compile
time was measured and compared. The following figure
illustrates the relative overhead compared to KVM ex-
ecution without KVM-PT (see Figure 8). We ran three
experiments to determine the overhead of the different
components. In each experiment, we measured three dif-
ferent overheads: wall-clock time, user, and kernel. The
difference in overall time is denoted by the wall-clock
overhead. Additionally, we measured how much more
time is spent in the kernel and how much time is spend
only in user space. Since we only trace the kernel, we
expect the users space overhead to be insignificant. Intel

Figure 9: kAFL and ptxed decoding time on multiple
copies of the same trace (kAFL is up to 30 times faster).

describes a performance penalty of < 5 % compared to
execution without enabled Intel PT [30]. Accordingly,
we expect approximately 5% of kernel overhead. In
the first experiment, the traces were discarded without
further analysis (KVM-PT). In the second experiment
(KVM-PT & ToPA Check), we enabled repeated check-
ing and clearing of the ToPA buffers. In the final ex-
periment (KVM-PT & PT decoder), we tested the whole
pipeline including our own decoder and conversion to an
AFL bitmap.

During our benchmarks, an overhead between 1% –
4% was measured empirically. Since the resulting over-
head is small, we do not expect it to have a major influ-
ence on the overall fuzzing performance.

5.8 Decoder Engine

In contrast to KVM-PT, the decoder has significant in-
fluence on the overall performance of the fuzzing pro-
cess since the decoding process is—other than Intel PT
and hence KVM-PT—not hardware-accelerated. There-
fore, this process is costly and has to be as efficient as
possible. Consequently, the performance of our devel-
oped PT decoder was compared to that of ptxed. This
decoder is Intel’s example implementation of an Intel PT
software decoder and is based on libipt. To compare
both decoder engines, a small Intel PT trace sample was
generated by executing

find / > /dev/null 2> /dev/null

within a Linux VM (Linux debian 4.8.0-1-amd64)
traced by KVM-PT. This performance benchmark was
processed on an i5-6500@3.2Ghz desktop system with
8GB DDR4 RAM. Only code execution in supervisor
mode was traced. The generated sample is 9.4MB in
size and contains over 431,650 TNT packets, each repre-
senting up to 7 branch transitions. The sample also con-
tains over 100,045 TIPs. We sanitized the sample by re-
moving anything but flow information packets (see Sec-
tion 2.3) to avoid any influence of decoding large amount

178 26th USENIX Security Symposium USENIX Association

of execution information packets, since those are not con-
sidered by our PT decoder. The result is a 5.3MB trace
file. To test the effectiveness of the caching approach of
our PT decoder, we created cases containing 1, 5, 10,
50, and 250 copies of the trace. This is a realistic test
case, since during fuzzing we see the same (or very sim-
ilar) paths repeatedly. Figure 9 illustrates the measured
speedup of our PT decoder compared to ptxed.

The figure also shows that our PT decoder easily out-
performs the Intel decoder implementation, even if the
PT decoder processes data for the very first time. This is
most likely due to the fact that even a single trace already
contains a significant amount of loops. Another possible
factor is the use of Capstone [2] as the instruction decod-
ing backend. As we decode more and more copies of the
same trace, it can be seen that our decoder becomes in-
creasingly faster (only using 56 times as much time to
decode 250 times that amount of data). The caching ap-
proach outperforms Intel’s implementation and is up to
25 to 30 times faster.

6 Related Work

Fuzzers are often classified according to the amount
of interaction with the target program. For black-box
fuzzers, the fuzzer does not use any information about
the target program at all. White-box fuzzers typically use
advanced program analysis techniques to uncover inter-
esting properties of the target. Somewhere in the mid-
dle are so called gray-box fuzzers that will typically use
some kind of feedback from the target (such as cover-
age information) to guide their search, without analyzing
the logic of the target program itself. In this section, we
provide a brief overview of the work performed in the
corresponding areas of fuzzing.

6.1 Black-Box Fuzzers
The oldest class of fuzzers are black-box fuzzers. These
fuzzers typically have no interaction with the target pro-
gram beyond executing it on newly generated inputs. To
increase effectiveness, a number of assumptions are usu-
ally made: Either a large corpus of good coverage inputs
get mutated and recombined repeatedly. Examples for
this class are Radamsa [3] or zzuf [12]. Or, the pro-
grammer needs to specify how to generate new semi-
valid input files that almost look like real files. Exam-
ples including tools like Peach [6] or Sulley [9]. Both
approaches have one very important drawback: It is a
time-consuming task to use these tools.

To improve the performance of black-box fuzzers,
many techniques have been proposed. Holler et al.
[27] introduced learning interesting parts of the input
grammar from old crashing inputs. Others even sought

to infer the whole input grammar from program traces
[13,24,38]. The selection of more interesting inputs was
optimized by Rebert et al. [36]. Similar approaches have
been used to optimize the mutation rate [17, 40].

6.2 White-Box fuzzers
To reduce the burden on the tester, techniques where in-
troduced that apply insights from program analysis to
find more interesting inputs. Tools like SAGE [23],
DART [22], KLEE [15], SmartFuzz [33], or Mayhem
[16] try to enumerate complex paths by using techniques
such as symbolic execution and constraint solving. Tools
like TaintScope [39], BuzzFuzz [21] and Vuzzer [35]
utilize taint tracing and similar dynamic analysis tech-
niques to uncover new paths. These tools are often able
to find very complicated code paths that are hidden be-
hind checksums, magic constants, and other constraints
that are very unlikely to be satisfied by random inputs.
Another approach is to use the same kind of information
to bias the search towards dangerous behavior instead of
new code paths [26].

The downside is that these techniques are often signif-
icantly harder to implement, scale to large programs, and
parallelize. To the best of our knowledge, there are no
such tools for operating system fuzzing.

6.3 Gray-Box Fuzzers
Gray-box fuzzers try to retain the high throughput and
simplicity of black-box fuzzers while gaining some of
the additional coverage provided by the advanced me-
chanics in white-box fuzzing. The prime example for
gray-box fuzzing is AFL, which uses coverage informa-
tion to guide its search. This way, AFL voids spend-
ing additional time on inputs that do not trigger new
behaviors. Similar techniques are used by many other
fuzzers [8, 25].

To further increase the effectiveness of gray-box
fuzzing, many of the tricks already used in black-box
fuzzing can be applied. Böhme et al. [14] showed how to
use the insight gained from modelling gray-box fuzzing
as a walk on a Markov chain to increase the performance
of gray-box fuzzing by up to an order of magnitude.

6.4 Coverage-Guided Kernel Fuzzers
A project called syzkaller was released by Vyukov; it
is the first publicly available gray-box coverage-guided
kernel fuzzer [10]. Nossum and Casanovas demonstrate
that most Linux file system drivers are vulnerable to
feedback-driven fuzzing by using an adapted version of
AFL [34]. This modified AFL version is based on glue
code to the kernel consisting of a driver interface to

USENIX Association 26th USENIX Security Symposium 179

measure feedback during fuzzing file system drivers of
the kernel and expose this data to the user space. This
fuzzer runs inside the targeted OS; a crash terminates the
fuzzing session.

In 2016, Hertz and Newsham released a modified ver-
sion of AFL called TriforceAFL [7]. Their work is based
on a modification of QEMU and utilizes the correspond-
ing emulation backend to measure fuzzing progress by
determining the current instruction pointer after a control
flow altering instruction has been executed. In theory,
their fuzzer is able to fuzz any OS emulated in QEMU. In
practice, the TriforceAFL fuzzer is limited to operating
systems that are able to boot from read-only file systems,
which narrows down the candidates to classic UNIX-like
operating systems such as Linux, FreeBSD, NetBSD, or
OpenBSD. Therefore, TriforceAFL is currently not able
to fuzz closed-source operating systems such as macOS
or Windows.

7 Discussion

Even though our approach is general, fast and mostly in-
dependent of the underlying OS, there are some limita-
tions we want to discuss in this section.

OS-Specific Code. We use a small amount (usually
less than 150 lines) of OS-dependent ring 3 code that per-
forms three tasks. First, it interacts with the OS to trans-
late the inputs from the fuzzing engine to interactions
with the OS (e.g., mount the data as a partition). Second,
it obtains the address of the crash handler of the OS such
that we can detect crashes faster than it would take to
wait for the timeout. Third, it can return the addresses of
certain drivers. These addresses can be used to limit trac-
ing to the activity of said drivers, which improves perfor-
mance when only fuzzing individual drivers.

None of these functions are necessary and only im-
prove performance in some cases. The first use case
can be avoided by using generic syscall fuzzing. In that
case a single standard C program which does not use any
platform-specific API would suffice to trigger sysenter/
syscall instructions. We do not strictly need the address
of the crash handler, since there are numerous other ways
to detect whether the VM crashed. It would also be quite
easy to obtain crash handlers dynamically by introduc-
ing faults and analyzing the obtained traces. Finally, we
can always trace the whole kernel, taking a slight perfor-
mance hit (mostly introduced by the increased amount of
non-determinism). In cases such as syscall fuzzing, we
need to trace the whole kernel, therefore syscall fuzzing
would not be impacted if this ability was missing. In
summary, this is the first approach that can fuzz arbitrary
x86-64 kernels without any customization and a near-
native performance.

Supported CPUs. Due to the usage of Intel PT and
Intel VT-x, our approach is limited to certain Intel CPUs
supporting these extensions. Virtually all modern Intel
CPUs support Intel VT-x. Unfortunately, Intel is rather
vague as to which CPUs exactly support process trace
inside of VMs and various other extensions (such as IP
filtering and multi-entry ToPA). We tested our system
on the following CPU models: Intel Core i5-6500, In-
tel Core i7-6700HQ, and Intel Core i5-6600. We believe
that at the time of writing, most Skylake and Kabylake
CPUs have the necessary hardware support.

Just-In-Time Code. Intel PT does not provide a com-
plete list of executed instruction pointers. Instead, Intel
PT generates as little information as necessary to reduce
the amount of data produced by the processor. Con-
sequently, the Intel PT software decoder does not only
require control flow information to reconstruct the con-
trol flow but also needs the program that was executed
during tracing. If the program is modified during run-
time, as often done by just-in-time (JIT) compilers in
user and kernel mode, the decoder is unable to exactly
restore the runtime control flow. To bypass this limita-
tion, the decoder requires information about all modi-
fications applied to the program instead of an ordinary
memory dump or the executable file. As Deng et al. [18]
have shown, this is possible by making use of EPT viola-
tions when executing written pages. Another, somewhat
more old-fashioned, method to achieve the same is to use
shadow page tables [19]. Once one it is possible to hook
the execution of modified code, self-modifying code can
be dumped. Reimplementing this technique was out of
the scope of this work. It should be noted though that
fuzzing kernel JIT code is a very interesting topic since
kernel JIT components, such as the BPF JIT in Linux,
have often been part of serious vulnerabilities.

Multibyte Compares. Similar to AFL, we are unable
to effectively bypass checks for large magic values in
the inputs. However, we support specifying dictionaries
of interesting constants to improve performance if such
magic values are known in advance (e.g., from RFCs,
source code, or disassembly). Some solutions involving
techniques such as concolic execution (e.g., Driller [37])
or taint tracking (e.g., Vuzzer [35]) have been proposed.
However, none of these techniques can easily be adapted
to closed-source operating system kernels. Therefore it
remains an open research problem how to deal with those
situations on the kernel level.

Ring 3 Fuzzing. We only demonstrated this technique
against kernel-level code. However, the exact same tech-
nique can be used to fuzz closed-source ring 3 code as

180 26th USENIX Security Symposium USENIX Association

well. Since our approach has a very modest tracing over-
head, we expect that this technique will outperform cur-
rent dynamic binary instrumentation based techniques
for feedback fuzzing of closed-source ring 3 programs
such as winAFL [20].

8 Conclusion

The latest generation of feedback-driven fuzzing meth-
ods has proven to be an effective approach to find vul-
nerabilities in an automated and comprehensive fashion.
Recent work has also demonstrated that such techniques
can be applied to kernel space. While previous feedback-
driven kernel fuzzers were able to find a large amount of
security flaws in certain operating systems, their benefit
was either limited by poor performance due to CPU emu-
lation or a lack of portability due to the need for compile-
time instrumentations.

In this paper, we presented a novel mechanism to uti-
lize the latest CPU features for a feedback-driven kernel
fuzzer. As shown in the evaluation, combining all com-
ponents provides the ability to apply kernel fuzz testing
to any target OS with significantly better performance
than the alternative approaches.

Acknowledgment
This work was supported by the German Federal
Ministry of Education and Research (BMBF Grant
16KIS0592K HWSec). We would like to thank our shep-
herd Suman Jana for his support in finalizing this paper
and the anonymous reviewers for their constructive and
valuable comments. Furthermore, we would also like
to thank Ralf Spenneberg and Hendrik Schwartke from
OpenSource Security for supporting this research. Fi-
nally, we would like to thank Ali Abbasi, Tim Blazytko,
Teemu Rytilahti and Christine Utz for their valuable
feedback.

References

[1] Announcing oss-fuzz: Continuous fuzzing for
open source software. https://testing.
googleblog.com/2016/12/announcing-oss-
fuzz-continuous-fuzzing.html. Accessed:
2017-06-29.

[2] Capstone disassembly framework. http://www.
capstone-engine.org/. Accessed: 2017-06-29.

[3] A general-purpose fuzzer. https://github.com/
aoh/radamsa. Accessed: 2017-06-29.

[4] Intel Processor Trace Decoder Library. https:
//github.com/01org/processor-trace. Ac-
cessed: 2017-06-29.

[5] Linux 4.8, perf Documentation. https:
//git.kernel.org/cgit/linux/kernel/
git/torvalds/linux.git/plain/tools/perf/
Documentation/intel-pt.txt?id=refs/tags/
v4.8. Accessed: 2017-06-29.

[6] Peach. http://www.peachfuzzer.com/. Ac-
cessed: 2017-06-29.

[7] Project Triforce: Run AFL on Everything!
https://www.nccgroup.trust/us/about-
us/newsroom-and-events/blog/2016/june/
project-triforce-run-afl-on-everything/.
Accessed: 2017-06-29.

[8] Security oriented fuzzer with powerful analysis op-
tions. https://github.com/google/honggfuzz.
Accessed: 2017-06-29.

[9] Sulley. https://github.com/OpenRCE/sulley.
Accessed: 2017-06-29.

[10] syzkaller: Linux syscall fuzzer. https://github.
com/google/syzkaller. Accessed: 2017-06-29.

[11] Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity. Ac-
cessed: 2017-06-29.

[12] zzuf. https://github.com/samhocevar/zzuf.
Accessed: 2017-06-29.

[13] O. Bastani, R. Sharma, A. Aiken, and P. Liang.
Synthesizing program input grammars. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[14] M. Böhme, V.-T. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain.
In ACM Conference on Computer and Communica-
tions Security (CCS), 2016.

[15] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Symposium
on Operating Systems Design and Implementation
(OSDI), 2008.

[16] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brum-
ley. Unleashing Mayhem on Binary Code. In IEEE
Symposium on Security and Privacy, 2012.

[17] S. K. Cha, M. Woo, and D. Brumley. Program-
adaptive mutational fuzzing. In IEEE Symposium
on Security and Privacy, 2015.

[18] Z. Deng, X. Zhang, and D. Xu. Spider: Stealthy
binary program instrumentation and debugging via
hardware virtualization. In Annual Computer Secu-
rity Applications Conference (ACSAC), 2013.

USENIX Association 26th USENIX Security Symposium 181

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://github.com/01org/processor-trace
https://github.com/01org/processor-trace
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
http://www.peachfuzzer.com/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://github.com/google/honggfuzz
https://github.com/OpenRCE/sulley
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/samhocevar/zzuf

[19] A. Dinaburg, P. Royal, M. Sharif, and W. Lee.
Ether: malware analysis via hardware virtualization
extensions. In ACM Conference on Computer and
Communications Security (CCS), 2008.

[20] Fratric, Ivan. WinAFL: A fork of AFL for
fuzzing Windows binaries. https://github.com/
ivanfratric/winafl, 2017.

[21] V. Ganesh, T. Leek, and M. Rinard. Taint-based
directed whitebox fuzzing. In International Con-
ference on Software Engineering (ICSE), 2009.

[22] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected Automated Random Testing. In ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2005.

[23] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE:
Whitebox Fuzzing for Security Testing. Queue,
10(1):20, 2012.

[24] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz:
Machine learning for input fuzzing. Technical re-
port, January 2017.

[25] P. Goodman. Shin GRR: Make Fuzzing Fast
Again. https://blog.trailofbits.com/2016/
11/02/shin-grr-make-fuzzing-fast-again/.
Accessed: 2017-06-29.

[26] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for overflows: A guided fuzzer to
find buffer boundary violations. In USENIX Secu-
rity Symposium, 2013.

[27] C. Holler, K. Herzig, and A. Zeller. Fuzzing with
code fragments. In USENIX Security Symposium,
2012.

[28] Intel. Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual (Order number: 325384-
058US, April 2016).

[29] A. Kleen. simple-pt: Simple Intel CPU pro-
cessor tracing on Linux. https://github.com/
andikleen/simple-pt.

[30] A. Kleen and B. Strong. Intel Processor Trace on
Linux. Tracing Summit 2015, 2015.

[31] Microsoft. FSCTL_DISMOUNT_VOLUME.
https://msdn.microsoft.com/en-us/
library/windows/desktop/aa364562(v=
vs.85).aspx, 2017.

[32] Microsoft. VHD Reference. https:
//msdn.microsoft.com/en-us/library/
windows/desktop/dd323700(v=vs.85).aspx,
2017.

[33] D. Molnar, X. C. Li, and D. Wagner. Dynamic
Test Generation to Find Integer Bugs in x86 Binary
Linux Programs. In USENIX Security Symposium,
2009.

[34] V. Nossum and Q. Casasnovas. Filesystem Fuzzing
with American Fuzzy Lop. Vault 2016, 2016.

[35] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuf-
frida, and H. Bos. Vuzzer: Application-aware evo-
lutionary fuzzing. In Symposium on Network and
Distributed System Security (NDSS), 2017.

[36] A. Rebert, S. K. Cha, T. Avgerinos, J. M. Foote,
D. Warren, G. Grieco, and D. Brumley. Optimiz-
ing seed selection for fuzzing. In USENIX Security
Symposium, 2014.

[37] N. Stephens, J. Grosen, C. Salls, A. Dutcher,
R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augment-
ing fuzzing through selective symbolic execution.
In Symposium on Network and Distributed System
Security (NDSS), 2016.

[38] J. Viide, A. Helin, M. Laakso, P. Pietikäinen,
M. Seppänen, K. Halunen, R. Puuperä, and J. Rön-
ing. Experiences with model inference assisted
fuzzing. In USENIX Workshop on Offensive Tech-
nologies (WOOT), 2008.

[39] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope:
A checksum-aware directed fuzzing tool for auto-
matic software vulnerability detection. In IEEE
Symposium on Security and Privacy, 2010.

[40] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley.
Scheduling black-box mutational fuzzing. In ACM
Conference on Computer and Communications Se-
curity (CCS), 2013.

182 26th USENIX Security Symposium USENIX Association

https://github.com/ivanfratric/winafl
https://github.com/ivanfratric/winafl
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://github.com/andikleen/simple-pt
https://github.com/andikleen/simple-pt
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364562(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364562(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa364562(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd323700(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd323700(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd323700(v=vs.85).aspx

	Introduction
	Technical Background
	x86-64 Virtual Memory Layouts
	Intel VT-x
	Intel Processor Trace

	System Overview
	Fuzzing Logic
	User Mode Agent
	Virtualization Infrastructure
	Stateful and Non-Deterministic Code
	Hypercalls

	Implementation Details
	KVM-PT
	vCPU Specific Traces
	Continuous Tracing

	QEMU-PT
	PT Decoder

	AFL Fuzzing Logic

	Evaluation
	Fuzzing Windows
	Fuzzing Linux
	Fuzzing macOS
	Rediscovery of Known Bugs
	Detected Vulnerabilities
	Fuzzing Performance
	KVM-PT Overhead
	Decoder Engine

	Related Work
	Black-Box Fuzzers
	White-Box fuzzers
	Gray-Box Fuzzers
	Coverage-Guided Kernel Fuzzers

	Discussion
	Conclusion

